Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringneglmul.b | |
|
ringneglmul.t | |
||
ringneglmul.n | |
||
ringneglmul.r | |
||
ringneglmul.x | |
||
ringneglmul.y | |
||
Assertion | ringm2neg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringneglmul.b | |
|
2 | ringneglmul.t | |
|
3 | ringneglmul.n | |
|
4 | ringneglmul.r | |
|
5 | ringneglmul.x | |
|
6 | ringneglmul.y | |
|
7 | ringgrp | |
|
8 | 4 7 | syl | |
9 | 1 3 | grpinvcl | |
10 | 8 6 9 | syl2anc | |
11 | 1 2 3 4 5 10 | ringmneg1 | |
12 | 1 2 3 4 5 6 | ringmneg2 | |
13 | 12 | fveq2d | |
14 | 1 2 | ringcl | |
15 | 4 5 6 14 | syl3anc | |
16 | 1 3 | grpinvinv | |
17 | 8 15 16 | syl2anc | |
18 | 11 13 17 | 3eqtrd | |