Metamath Proof Explorer


Theorem ringm2neg

Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses ringneglmul.b B=BaseR
ringneglmul.t ·˙=R
ringneglmul.n N=invgR
ringneglmul.r φRRing
ringneglmul.x φXB
ringneglmul.y φYB
Assertion ringm2neg φNX·˙NY=X·˙Y

Proof

Step Hyp Ref Expression
1 ringneglmul.b B=BaseR
2 ringneglmul.t ·˙=R
3 ringneglmul.n N=invgR
4 ringneglmul.r φRRing
5 ringneglmul.x φXB
6 ringneglmul.y φYB
7 ringgrp RRingRGrp
8 4 7 syl φRGrp
9 1 3 grpinvcl RGrpYBNYB
10 8 6 9 syl2anc φNYB
11 1 2 3 4 5 10 ringmneg1 φNX·˙NY=NX·˙NY
12 1 2 3 4 5 6 ringmneg2 φX·˙NY=NX·˙Y
13 12 fveq2d φNX·˙NY=NNX·˙Y
14 1 2 ringcl RRingXBYBX·˙YB
15 4 5 6 14 syl3anc φX·˙YB
16 1 3 grpinvinv RGrpX·˙YBNNX·˙Y=X·˙Y
17 8 15 16 syl2anc φNNX·˙Y=X·˙Y
18 11 13 17 3eqtrd φNX·˙NY=X·˙Y