Metamath Proof Explorer


Theorem riotasv3d

Description: A property ch holding for a representative of a single-valued class expression C ( y ) (see e.g. reusv2 ) also holds for its description binder D (in the form of property th ). (Contributed by NM, 5-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotasv3d.1 yφ
riotasv3d.2 φyθ
riotasv3d.3 φD=ιxA|yBψx=C
riotasv3d.4 φC=Dχθ
riotasv3d.5 φyBψχ
riotasv3d.6 φDA
riotasv3d.7 φyBψ
Assertion riotasv3d φAVθ

Proof

Step Hyp Ref Expression
1 riotasv3d.1 yφ
2 riotasv3d.2 φyθ
3 riotasv3d.3 φD=ιxA|yBψx=C
4 riotasv3d.4 φC=Dχθ
5 riotasv3d.5 φyBψχ
6 riotasv3d.6 φDA
7 riotasv3d.7 φyBψ
8 elex AVAV
9 7 adantr φAVyBψ
10 nfv yAV
11 5 imp φyBψχ
12 11 adantrl φAVyBψχ
13 3 6 riotasvd φAVyBψD=C
14 13 impr φAVyBψD=C
15 14 eqcomd φAVyBψC=D
16 15 4 syldan φAVyBψχθ
17 12 16 mpbid φAVyBψθ
18 17 exp45 φAVyBψθ
19 1 10 18 ralrimd φAVyBψθ
20 r19.23t yθyBψθyBψθ
21 2 20 syl φyBψθyBψθ
22 19 21 sylibd φAVyBψθ
23 22 imp φAVyBψθ
24 9 23 mpd φAVθ
25 8 24 sylan2 φAVθ