Metamath Proof Explorer


Theorem risefaccllem

Description: Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses risefallfaccllem.1 S
risefallfaccllem.2 1S
risefallfaccllem.3 xSySxyS
risefaccllem.4 ASk0A+kS
Assertion risefaccllem ASN0ANS

Proof

Step Hyp Ref Expression
1 risefallfaccllem.1 S
2 risefallfaccllem.2 1S
3 risefallfaccllem.3 xSySxyS
4 risefaccllem.4 ASk0A+kS
5 1 sseli ASA
6 risefacval AN0AN=k=0N1A+k
7 5 6 sylan ASN0AN=k=0N1A+k
8 1 a1i ASS
9 3 adantl ASxSySxyS
10 fzfid AS0N1Fin
11 elfznn0 k0N1k0
12 11 4 sylan2 ASk0N1A+kS
13 2 a1i AS1S
14 8 9 10 12 13 fprodcllem ASk=0N1A+kS
15 14 adantr ASN0k=0N1A+kS
16 7 15 eqeltrd ASN0ANS