Metamath Proof Explorer


Theorem risefacval2

Description: One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018)

Ref Expression
Assertion risefacval2 AN0AN=k=1NA+k-1

Proof

Step Hyp Ref Expression
1 risefacval AN0AN=n=0N1A+n
2 1zzd AN01
3 0zd AN00
4 nn0z N0N
5 peano2zm NN1
6 4 5 syl N0N1
7 6 adantl AN0N1
8 simpl AN0A
9 elfznn0 n0N1n0
10 9 nn0cnd n0N1n
11 addcl AnA+n
12 8 10 11 syl2an AN0n0N1A+n
13 oveq2 n=k1A+n=A+k-1
14 2 3 7 12 13 fprodshft AN0n=0N1A+n=k=0+1N-1+1A+k-1
15 0p1e1 0+1=1
16 15 a1i AN00+1=1
17 nn0cn N0N
18 1cnd N01
19 17 18 npcand N0N-1+1=N
20 19 adantl AN0N-1+1=N
21 16 20 oveq12d AN00+1N-1+1=1N
22 21 prodeq1d AN0k=0+1N-1+1A+k-1=k=1NA+k-1
23 1 14 22 3eqtrd AN0AN=k=1NA+k-1