Metamath Proof Explorer


Theorem rlimsub

Description: Limit of the difference of two converging functions. Proposition 12-2.1(b) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses rlimadd.3 φxABV
rlimadd.4 φxACV
rlimadd.5 φxABD
rlimadd.6 φxACE
Assertion rlimsub φxABCDE

Proof

Step Hyp Ref Expression
1 rlimadd.3 φxABV
2 rlimadd.4 φxACV
3 rlimadd.5 φxABD
4 rlimadd.6 φxACE
5 1 3 rlimmptrcl φxAB
6 2 4 rlimmptrcl φxAC
7 rlimcl xABDD
8 3 7 syl φD
9 rlimcl xACEE
10 4 9 syl φE
11 subf :×
12 11 a1i φ:×
13 simpr φy+y+
14 8 adantr φy+D
15 10 adantr φy+E
16 subcn2 y+DEz+w+uvuD<zvE<wu-v-DE<y
17 13 14 15 16 syl3anc φy+z+w+uvuD<zvE<wu-v-DE<y
18 5 6 8 10 3 4 12 17 rlimcn2 φxABCDE