Metamath Proof Explorer


Theorem rmynn0

Description: rmY is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn0 A2N0AYrmN0

Proof

Step Hyp Ref Expression
1 nn0z N0N
2 frmy Yrm:2×
3 2 fovcl A2NAYrmN
4 1 3 sylan2 A2N0AYrmN
5 rmxypos A2N00<AXrmN0AYrmN
6 5 simprd A2N00AYrmN
7 elnn0z AYrmN0AYrmN0AYrmN
8 4 6 7 sylanbrc A2N0AYrmN0