Metamath Proof Explorer


Theorem rngccoALTV

Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C=RngCatALTVU
rngcbasALTV.b B=BaseC
rngcbasALTV.u φUV
rngccofvalALTV.o ·˙=compC
rngccoALTV.x φXB
rngccoALTV.y φYB
rngccoALTV.z φZB
rngccoALTV.f φFXRngHomY
rngccoALTV.g φGYRngHomZ
Assertion rngccoALTV φGXY·˙ZF=GF

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C=RngCatALTVU
2 rngcbasALTV.b B=BaseC
3 rngcbasALTV.u φUV
4 rngccofvalALTV.o ·˙=compC
5 rngccoALTV.x φXB
6 rngccoALTV.y φYB
7 rngccoALTV.z φZB
8 rngccoALTV.f φFXRngHomY
9 rngccoALTV.g φGYRngHomZ
10 1 2 3 4 rngccofvalALTV φ·˙=vB×B,zBg2ndvRngHomz,f1stvRngHom2ndvgf
11 simprl φv=XYz=Zv=XY
12 11 fveq2d φv=XYz=Z2ndv=2ndXY
13 op2ndg XBYB2ndXY=Y
14 5 6 13 syl2anc φ2ndXY=Y
15 14 adantr φv=XYz=Z2ndXY=Y
16 12 15 eqtrd φv=XYz=Z2ndv=Y
17 simprr φv=XYz=Zz=Z
18 16 17 oveq12d φv=XYz=Z2ndvRngHomz=YRngHomZ
19 11 fveq2d φv=XYz=Z1stv=1stXY
20 op1stg XBYB1stXY=X
21 5 6 20 syl2anc φ1stXY=X
22 21 adantr φv=XYz=Z1stXY=X
23 19 22 eqtrd φv=XYz=Z1stv=X
24 23 16 oveq12d φv=XYz=Z1stvRngHom2ndv=XRngHomY
25 eqidd φv=XYz=Zgf=gf
26 18 24 25 mpoeq123dv φv=XYz=Zg2ndvRngHomz,f1stvRngHom2ndvgf=gYRngHomZ,fXRngHomYgf
27 opelxpi XBYBXYB×B
28 5 6 27 syl2anc φXYB×B
29 ovex YRngHomZV
30 ovex XRngHomYV
31 29 30 mpoex gYRngHomZ,fXRngHomYgfV
32 31 a1i φgYRngHomZ,fXRngHomYgfV
33 10 26 28 7 32 ovmpod φXY·˙Z=gYRngHomZ,fXRngHomYgf
34 simprl φg=Gf=Fg=G
35 simprr φg=Gf=Ff=F
36 34 35 coeq12d φg=Gf=Fgf=GF
37 coexg GYRngHomZFXRngHomYGFV
38 9 8 37 syl2anc φGFV
39 33 36 9 8 38 ovmpod φGXY·˙ZF=GF