Metamath Proof Explorer


Theorem rngcid

Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (Revised by AV, 10-Mar-2020)

Ref Expression
Hypotheses rngccat.c C = RngCat U
rngcid.b B = Base C
rngcid.o 1 ˙ = Id C
rngcid.u φ U V
rngcid.x φ X B
rngcid.s S = Base X
Assertion rngcid φ 1 ˙ X = I S

Proof

Step Hyp Ref Expression
1 rngccat.c C = RngCat U
2 rngcid.b B = Base C
3 rngcid.o 1 ˙ = Id C
4 rngcid.u φ U V
5 rngcid.x φ X B
6 rngcid.s S = Base X
7 eqidd φ U Rng = U Rng
8 eqidd φ RngHomo U Rng × U Rng = RngHomo U Rng × U Rng
9 1 4 7 8 rngcval φ C = ExtStrCat U cat RngHomo U Rng × U Rng
10 9 fveq2d φ Id C = Id ExtStrCat U cat RngHomo U Rng × U Rng
11 3 10 syl5eq φ 1 ˙ = Id ExtStrCat U cat RngHomo U Rng × U Rng
12 11 fveq1d φ 1 ˙ X = Id ExtStrCat U cat RngHomo U Rng × U Rng X
13 eqid ExtStrCat U cat RngHomo U Rng × U Rng = ExtStrCat U cat RngHomo U Rng × U Rng
14 eqid ExtStrCat U = ExtStrCat U
15 incom U Rng = Rng U
16 15 a1i φ U Rng = Rng U
17 14 4 16 8 rnghmsubcsetc φ RngHomo U Rng × U Rng Subcat ExtStrCat U
18 7 8 rnghmresfn φ RngHomo U Rng × U Rng Fn U Rng × U Rng
19 eqid Id ExtStrCat U = Id ExtStrCat U
20 1 2 4 rngcbas φ B = U Rng
21 20 eleq2d φ X B X U Rng
22 5 21 mpbid φ X U Rng
23 13 17 18 19 22 subcid φ Id ExtStrCat U X = Id ExtStrCat U cat RngHomo U Rng × U Rng X
24 elinel1 X U Rng X U
25 21 24 syl6bi φ X B X U
26 5 25 mpd φ X U
27 14 19 4 26 estrcid φ Id ExtStrCat U X = I Base X
28 6 eqcomi Base X = S
29 28 a1i φ Base X = S
30 29 reseq2d φ I Base X = I S
31 27 30 eqtrd φ Id ExtStrCat U X = I S
32 12 23 31 3eqtr2d φ 1 ˙ X = I S