Metamath Proof Explorer


Theorem rngcid

Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (Revised by AV, 10-Mar-2020)

Ref Expression
Hypotheses rngccat.c C=RngCatU
rngcid.b B=BaseC
rngcid.o 1˙=IdC
rngcid.u φUV
rngcid.x φXB
rngcid.s S=BaseX
Assertion rngcid φ1˙X=IS

Proof

Step Hyp Ref Expression
1 rngccat.c C=RngCatU
2 rngcid.b B=BaseC
3 rngcid.o 1˙=IdC
4 rngcid.u φUV
5 rngcid.x φXB
6 rngcid.s S=BaseX
7 eqidd φURng=URng
8 eqidd φRngHomURng×URng=RngHomURng×URng
9 1 4 7 8 rngcval φC=ExtStrCatUcatRngHomURng×URng
10 9 fveq2d φIdC=IdExtStrCatUcatRngHomURng×URng
11 3 10 eqtrid φ1˙=IdExtStrCatUcatRngHomURng×URng
12 11 fveq1d φ1˙X=IdExtStrCatUcatRngHomURng×URngX
13 eqid ExtStrCatUcatRngHomURng×URng=ExtStrCatUcatRngHomURng×URng
14 eqid ExtStrCatU=ExtStrCatU
15 incom URng=RngU
16 15 a1i φURng=RngU
17 14 4 16 8 rnghmsubcsetc φRngHomURng×URngSubcatExtStrCatU
18 7 8 rnghmresfn φRngHomURng×URngFnURng×URng
19 eqid IdExtStrCatU=IdExtStrCatU
20 1 2 4 rngcbas φB=URng
21 20 eleq2d φXBXURng
22 5 21 mpbid φXURng
23 13 17 18 19 22 subcid φIdExtStrCatUX=IdExtStrCatUcatRngHomURng×URngX
24 elinel1 XURngXU
25 21 24 syl6bi φXBXU
26 5 25 mpd φXU
27 14 19 4 26 estrcid φIdExtStrCatUX=IBaseX
28 6 eqcomi BaseX=S
29 28 a1i φBaseX=S
30 29 reseq2d φIBaseX=IS
31 27 30 eqtrd φIdExtStrCatUX=IS
32 12 23 31 3eqtr2d φ1˙X=IS