Metamath Proof Explorer


Theorem rngm2neg

Description: Double negation of a product in a non-unital ring ( mul2neg analog). (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses rngneglmul.b B=BaseR
rngneglmul.t ·˙=R
rngneglmul.n N=invgR
rngneglmul.r φRRng
rngneglmul.x φXB
rngneglmul.y φYB
Assertion rngm2neg φNX·˙NY=X·˙Y

Proof

Step Hyp Ref Expression
1 rngneglmul.b B=BaseR
2 rngneglmul.t ·˙=R
3 rngneglmul.n N=invgR
4 rngneglmul.r φRRng
5 rngneglmul.x φXB
6 rngneglmul.y φYB
7 rnggrp RRngRGrp
8 4 7 syl φRGrp
9 1 3 8 6 grpinvcld φNYB
10 1 2 3 4 5 9 rngmneg1 φNX·˙NY=NX·˙NY
11 1 2 3 4 5 6 rngmneg2 φX·˙NY=NX·˙Y
12 11 fveq2d φNX·˙NY=NNX·˙Y
13 1 2 rngcl RRngXBYBX·˙YB
14 4 5 6 13 syl3anc φX·˙YB
15 1 3 grpinvinv RGrpX·˙YBNNX·˙Y=X·˙Y
16 8 14 15 syl2anc φNNX·˙Y=X·˙Y
17 10 12 16 3eqtrd φNX·˙NY=X·˙Y