Description: Double negation of a product in a non-unital ring ( mul2neg analog). (Contributed by AV, 17-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngneglmul.b | |
|
rngneglmul.t | |
||
rngneglmul.n | |
||
rngneglmul.r | |
||
rngneglmul.x | |
||
rngneglmul.y | |
||
Assertion | rngm2neg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | |
|
2 | rngneglmul.t | |
|
3 | rngneglmul.n | |
|
4 | rngneglmul.r | |
|
5 | rngneglmul.x | |
|
6 | rngneglmul.y | |
|
7 | rnggrp | |
|
8 | 4 7 | syl | |
9 | 1 3 8 6 | grpinvcld | |
10 | 1 2 3 4 5 9 | rngmneg1 | |
11 | 1 2 3 4 5 6 | rngmneg2 | |
12 | 11 | fveq2d | |
13 | 1 2 | rngcl | |
14 | 4 5 6 13 | syl3anc | |
15 | 1 3 | grpinvinv | |
16 | 8 14 15 | syl2anc | |
17 | 10 12 16 | 3eqtrd | |