Metamath Proof Explorer


Theorem rngoidl

Description: A ring R is an R ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses rngidl.1 G=1stR
rngidl.2 X=ranG
Assertion rngoidl RRingOpsXIdlR

Proof

Step Hyp Ref Expression
1 rngidl.1 G=1stR
2 rngidl.2 X=ranG
3 ssidd RRingOpsXX
4 eqid GIdG=GIdG
5 1 2 4 rngo0cl RRingOpsGIdGX
6 1 2 rngogcl RRingOpsxXyXxGyX
7 6 3expa RRingOpsxXyXxGyX
8 7 ralrimiva RRingOpsxXyXxGyX
9 eqid 2ndR=2ndR
10 1 9 2 rngocl RRingOpszXxXz2ndRxX
11 10 3com23 RRingOpsxXzXz2ndRxX
12 1 9 2 rngocl RRingOpsxXzXx2ndRzX
13 11 12 jca RRingOpsxXzXz2ndRxXx2ndRzX
14 13 3expa RRingOpsxXzXz2ndRxXx2ndRzX
15 14 ralrimiva RRingOpsxXzXz2ndRxXx2ndRzX
16 8 15 jca RRingOpsxXyXxGyXzXz2ndRxXx2ndRzX
17 16 ralrimiva RRingOpsxXyXxGyXzXz2ndRxXx2ndRzX
18 1 9 2 4 isidl RRingOpsXIdlRXXGIdGXxXyXxGyXzXz2ndRxXx2ndRzX
19 3 5 17 18 mpbir3and RRingOpsXIdlR