Metamath Proof Explorer


Theorem rngoidl

Description: A ring R is an R ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses rngidl.1 G = 1 st R
rngidl.2 X = ran G
Assertion rngoidl R RingOps X Idl R

Proof

Step Hyp Ref Expression
1 rngidl.1 G = 1 st R
2 rngidl.2 X = ran G
3 ssidd R RingOps X X
4 eqid GId G = GId G
5 1 2 4 rngo0cl R RingOps GId G X
6 1 2 rngogcl R RingOps x X y X x G y X
7 6 3expa R RingOps x X y X x G y X
8 7 ralrimiva R RingOps x X y X x G y X
9 eqid 2 nd R = 2 nd R
10 1 9 2 rngocl R RingOps z X x X z 2 nd R x X
11 10 3com23 R RingOps x X z X z 2 nd R x X
12 1 9 2 rngocl R RingOps x X z X x 2 nd R z X
13 11 12 jca R RingOps x X z X z 2 nd R x X x 2 nd R z X
14 13 3expa R RingOps x X z X z 2 nd R x X x 2 nd R z X
15 14 ralrimiva R RingOps x X z X z 2 nd R x X x 2 nd R z X
16 8 15 jca R RingOps x X y X x G y X z X z 2 nd R x X x 2 nd R z X
17 16 ralrimiva R RingOps x X y X x G y X z X z 2 nd R x X x 2 nd R z X
18 1 9 2 4 isidl R RingOps X Idl R X X GId G X x X y X x G y X z X z 2 nd R x X x 2 nd R z X
19 3 5 17 18 mpbir3and R RingOps X Idl R