Description: A ring R is an R ideal. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngidl.1 | |
|
rngidl.2 | |
||
Assertion | rngoidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidl.1 | |
|
2 | rngidl.2 | |
|
3 | ssidd | |
|
4 | eqid | |
|
5 | 1 2 4 | rngo0cl | |
6 | 1 2 | rngogcl | |
7 | 6 | 3expa | |
8 | 7 | ralrimiva | |
9 | eqid | |
|
10 | 1 9 2 | rngocl | |
11 | 10 | 3com23 | |
12 | 1 9 2 | rngocl | |
13 | 11 12 | jca | |
14 | 13 | 3expa | |
15 | 14 | ralrimiva | |
16 | 8 15 | jca | |
17 | 16 | ralrimiva | |
18 | 1 9 2 4 | isidl | |
19 | 3 5 17 18 | mpbir3and | |