Metamath Proof Explorer


Theorem rngosubdir

Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringsubdi.1 G=1stR
ringsubdi.2 H=2ndR
ringsubdi.3 X=ranG
ringsubdi.4 D=/gG
Assertion rngosubdir RRingOpsAXBXCXADBHC=AHCDBHC

Proof

Step Hyp Ref Expression
1 ringsubdi.1 G=1stR
2 ringsubdi.2 H=2ndR
3 ringsubdi.3 X=ranG
4 ringsubdi.4 D=/gG
5 eqid invG=invG
6 1 3 5 4 rngosub RRingOpsAXBXADB=AGinvGB
7 6 3adant3r3 RRingOpsAXBXCXADB=AGinvGB
8 7 oveq1d RRingOpsAXBXCXADBHC=AGinvGBHC
9 1 2 3 rngocl RRingOpsAXCXAHCX
10 9 3adant3r2 RRingOpsAXBXCXAHCX
11 1 2 3 rngocl RRingOpsBXCXBHCX
12 11 3adant3r1 RRingOpsAXBXCXBHCX
13 10 12 jca RRingOpsAXBXCXAHCXBHCX
14 1 3 5 4 rngosub RRingOpsAHCXBHCXAHCDBHC=AHCGinvGBHC
15 14 3expb RRingOpsAHCXBHCXAHCDBHC=AHCGinvGBHC
16 13 15 syldan RRingOpsAXBXCXAHCDBHC=AHCGinvGBHC
17 idd RRingOpsAXAX
18 1 3 5 rngonegcl RRingOpsBXinvGBX
19 18 ex RRingOpsBXinvGBX
20 idd RRingOpsCXCX
21 17 19 20 3anim123d RRingOpsAXBXCXAXinvGBXCX
22 21 imp RRingOpsAXBXCXAXinvGBXCX
23 1 2 3 rngodir RRingOpsAXinvGBXCXAGinvGBHC=AHCGinvGBHC
24 22 23 syldan RRingOpsAXBXCXAGinvGBHC=AHCGinvGBHC
25 1 2 3 5 rngoneglmul RRingOpsBXCXinvGBHC=invGBHC
26 25 3adant3r1 RRingOpsAXBXCXinvGBHC=invGBHC
27 26 oveq2d RRingOpsAXBXCXAHCGinvGBHC=AHCGinvGBHC
28 24 27 eqtr4d RRingOpsAXBXCXAGinvGBHC=AHCGinvGBHC
29 16 28 eqtr4d RRingOpsAXBXCXAHCDBHC=AGinvGBHC
30 8 29 eqtr4d RRingOpsAXBXCXADBHC=AHCDBHC