Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringnegmul.1 | |
|
ringnegmul.2 | |
||
ringnegmul.3 | |
||
ringnegmul.4 | |
||
Assertion | rngoneglmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegmul.1 | |
|
2 | ringnegmul.2 | |
|
3 | ringnegmul.3 | |
|
4 | ringnegmul.4 | |
|
5 | 1 | rneqi | |
6 | 3 5 | eqtri | |
7 | eqid | |
|
8 | 6 2 7 | rngo1cl | |
9 | 1 3 4 | rngonegcl | |
10 | 8 9 | mpdan | |
11 | 1 2 3 | rngoass | |
12 | 11 | 3exp2 | |
13 | 10 12 | mpd | |
14 | 13 | 3imp | |
15 | 1 2 3 4 7 | rngonegmn1l | |
16 | 15 | 3adant3 | |
17 | 16 | oveq1d | |
18 | 1 2 3 | rngocl | |
19 | 18 | 3expb | |
20 | 1 2 3 4 7 | rngonegmn1l | |
21 | 19 20 | syldan | |
22 | 21 | 3impb | |
23 | 14 17 22 | 3eqtr4rd | |