Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv . (Contributed by Jeff Madsen, 18-Apr-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zerdivempx.1 | |
|
zerdivempx.2 | |
||
zerdivempx.3 | |
||
zerdivempx.4 | |
||
zerdivempx.5 | |
||
Assertion | zerdivemp1x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zerdivempx.1 | |
|
2 | zerdivempx.2 | |
|
3 | zerdivempx.3 | |
|
4 | zerdivempx.4 | |
|
5 | zerdivempx.5 | |
|
6 | oveq2 | |
|
7 | simpl1 | |
|
8 | simpr1 | |
|
9 | simpr3 | |
|
10 | simpl3 | |
|
11 | 1 2 4 | rngoass | |
12 | 7 8 9 10 11 | syl13anc | |
13 | eqtr | |
|
14 | 13 | ex | |
15 | eqtr | |
|
16 | 3 4 1 2 | rngorz | |
17 | 16 | 3adant3 | |
18 | 1 | rneqi | |
19 | 4 18 | eqtri | |
20 | 2 19 5 | rngolidm | |
21 | 20 | 3adant2 | |
22 | simp1 | |
|
23 | simp2 | |
|
24 | simp3 | |
|
25 | 22 23 24 | 3eqtr3d | |
26 | 25 | a1d | |
27 | 26 | 3exp | |
28 | 27 | com14 | |
29 | 28 | com13 | |
30 | 17 21 29 | sylc | |
31 | 30 | 3exp | |
32 | 31 | com15 | |
33 | 32 | com24 | |
34 | 15 33 | syl | |
35 | 34 | ex | |
36 | 35 | eqcoms | |
37 | 36 | com25 | |
38 | oveq1 | |
|
39 | 37 38 | syl11 | |
40 | 39 | 3imp | |
41 | 40 | com13 | |
42 | 14 41 | syl6 | |
43 | 42 | com15 | |
44 | 43 | 3imp1 | |
45 | 12 44 | mpd | |
46 | 45 | 3exp1 | |
47 | 6 46 | syl5com | |
48 | 47 | com14 | |
49 | 48 | 3exp | |
50 | 49 | rexlimiv | |
51 | 50 | com13 | |
52 | 51 | 3imp | |