Metamath Proof Explorer


Theorem zerdivemp1x

Description: In a unitary ring a left invertible element is not a zero divisor. See also ringinvnzdiv . (Contributed by Jeff Madsen, 18-Apr-2010)

Ref Expression
Hypotheses zerdivempx.1 G = 1 st R
zerdivempx.2 H = 2 nd R
zerdivempx.3 Z = GId G
zerdivempx.4 X = ran G
zerdivempx.5 U = GId H
Assertion zerdivemp1x R RingOps A X a X a H A = U B X A H B = Z B = Z

Proof

Step Hyp Ref Expression
1 zerdivempx.1 G = 1 st R
2 zerdivempx.2 H = 2 nd R
3 zerdivempx.3 Z = GId G
4 zerdivempx.4 X = ran G
5 zerdivempx.5 U = GId H
6 oveq2 A H B = Z a H A H B = a H Z
7 simpl1 R RingOps a H A H B = a H Z B X a X a H A = U A X R RingOps
8 simpr1 R RingOps a H A H B = a H Z B X a X a H A = U A X a X
9 simpr3 R RingOps a H A H B = a H Z B X a X a H A = U A X A X
10 simpl3 R RingOps a H A H B = a H Z B X a X a H A = U A X B X
11 1 2 4 rngoass R RingOps a X A X B X a H A H B = a H A H B
12 7 8 9 10 11 syl13anc R RingOps a H A H B = a H Z B X a X a H A = U A X a H A H B = a H A H B
13 eqtr a H A H B = a H A H B a H A H B = a H Z a H A H B = a H Z
14 13 ex a H A H B = a H A H B a H A H B = a H Z a H A H B = a H Z
15 eqtr U H B = a H A H B a H A H B = a H Z U H B = a H Z
16 3 4 1 2 rngorz R RingOps a X a H Z = Z
17 16 3adant3 R RingOps a X B X a H Z = Z
18 1 rneqi ran G = ran 1 st R
19 4 18 eqtri X = ran 1 st R
20 2 19 5 rngolidm R RingOps B X U H B = B
21 20 3adant2 R RingOps a X B X U H B = B
22 simp1 U H B = a H Z U H B = B a H Z = Z U H B = a H Z
23 simp2 U H B = a H Z U H B = B a H Z = Z U H B = B
24 simp3 U H B = a H Z U H B = B a H Z = Z a H Z = Z
25 22 23 24 3eqtr3d U H B = a H Z U H B = B a H Z = Z B = Z
26 25 a1d U H B = a H Z U H B = B a H Z = Z A X B = Z
27 26 3exp U H B = a H Z U H B = B a H Z = Z A X B = Z
28 27 com14 A X U H B = B a H Z = Z U H B = a H Z B = Z
29 28 com13 a H Z = Z U H B = B A X U H B = a H Z B = Z
30 17 21 29 sylc R RingOps a X B X A X U H B = a H Z B = Z
31 30 3exp R RingOps a X B X A X U H B = a H Z B = Z
32 31 com15 U H B = a H Z a X B X A X R RingOps B = Z
33 32 com24 U H B = a H Z A X B X a X R RingOps B = Z
34 15 33 syl U H B = a H A H B a H A H B = a H Z A X B X a X R RingOps B = Z
35 34 ex U H B = a H A H B a H A H B = a H Z A X B X a X R RingOps B = Z
36 35 eqcoms a H A H B = U H B a H A H B = a H Z A X B X a X R RingOps B = Z
37 36 com25 a H A H B = U H B a X A X B X a H A H B = a H Z R RingOps B = Z
38 oveq1 a H A = U a H A H B = U H B
39 37 38 syl11 a X a H A = U A X B X a H A H B = a H Z R RingOps B = Z
40 39 3imp a X a H A = U A X B X a H A H B = a H Z R RingOps B = Z
41 40 com13 a H A H B = a H Z B X a X a H A = U A X R RingOps B = Z
42 14 41 syl6 a H A H B = a H A H B a H A H B = a H Z B X a X a H A = U A X R RingOps B = Z
43 42 com15 R RingOps a H A H B = a H Z B X a X a H A = U A X a H A H B = a H A H B B = Z
44 43 3imp1 R RingOps a H A H B = a H Z B X a X a H A = U A X a H A H B = a H A H B B = Z
45 12 44 mpd R RingOps a H A H B = a H Z B X a X a H A = U A X B = Z
46 45 3exp1 R RingOps a H A H B = a H Z B X a X a H A = U A X B = Z
47 6 46 syl5com A H B = Z R RingOps B X a X a H A = U A X B = Z
48 47 com14 a X a H A = U A X R RingOps B X A H B = Z B = Z
49 48 3exp a X a H A = U A X R RingOps B X A H B = Z B = Z
50 49 rexlimiv a X a H A = U A X R RingOps B X A H B = Z B = Z
51 50 com13 R RingOps A X a X a H A = U B X A H B = Z B = Z
52 51 3imp R RingOps A X a X a H A = U B X A H B = Z B = Z