Metamath Proof Explorer


Theorem zerdivemp1x

Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv . (Contributed by Jeff Madsen, 18-Apr-2010)

Ref Expression
Hypotheses zerdivempx.1 G=1stR
zerdivempx.2 H=2ndR
zerdivempx.3 Z=GIdG
zerdivempx.4 X=ranG
zerdivempx.5 U=GIdH
Assertion zerdivemp1x RRingOpsAXaXaHA=UBXAHB=ZB=Z

Proof

Step Hyp Ref Expression
1 zerdivempx.1 G=1stR
2 zerdivempx.2 H=2ndR
3 zerdivempx.3 Z=GIdG
4 zerdivempx.4 X=ranG
5 zerdivempx.5 U=GIdH
6 oveq2 AHB=ZaHAHB=aHZ
7 simpl1 RRingOpsaHAHB=aHZBXaXaHA=UAXRRingOps
8 simpr1 RRingOpsaHAHB=aHZBXaXaHA=UAXaX
9 simpr3 RRingOpsaHAHB=aHZBXaXaHA=UAXAX
10 simpl3 RRingOpsaHAHB=aHZBXaXaHA=UAXBX
11 1 2 4 rngoass RRingOpsaXAXBXaHAHB=aHAHB
12 7 8 9 10 11 syl13anc RRingOpsaHAHB=aHZBXaXaHA=UAXaHAHB=aHAHB
13 eqtr aHAHB=aHAHBaHAHB=aHZaHAHB=aHZ
14 13 ex aHAHB=aHAHBaHAHB=aHZaHAHB=aHZ
15 eqtr UHB=aHAHBaHAHB=aHZUHB=aHZ
16 3 4 1 2 rngorz RRingOpsaXaHZ=Z
17 16 3adant3 RRingOpsaXBXaHZ=Z
18 1 rneqi ranG=ran1stR
19 4 18 eqtri X=ran1stR
20 2 19 5 rngolidm RRingOpsBXUHB=B
21 20 3adant2 RRingOpsaXBXUHB=B
22 simp1 UHB=aHZUHB=BaHZ=ZUHB=aHZ
23 simp2 UHB=aHZUHB=BaHZ=ZUHB=B
24 simp3 UHB=aHZUHB=BaHZ=ZaHZ=Z
25 22 23 24 3eqtr3d UHB=aHZUHB=BaHZ=ZB=Z
26 25 a1d UHB=aHZUHB=BaHZ=ZAXB=Z
27 26 3exp UHB=aHZUHB=BaHZ=ZAXB=Z
28 27 com14 AXUHB=BaHZ=ZUHB=aHZB=Z
29 28 com13 aHZ=ZUHB=BAXUHB=aHZB=Z
30 17 21 29 sylc RRingOpsaXBXAXUHB=aHZB=Z
31 30 3exp RRingOpsaXBXAXUHB=aHZB=Z
32 31 com15 UHB=aHZaXBXAXRRingOpsB=Z
33 32 com24 UHB=aHZAXBXaXRRingOpsB=Z
34 15 33 syl UHB=aHAHBaHAHB=aHZAXBXaXRRingOpsB=Z
35 34 ex UHB=aHAHBaHAHB=aHZAXBXaXRRingOpsB=Z
36 35 eqcoms aHAHB=UHBaHAHB=aHZAXBXaXRRingOpsB=Z
37 36 com25 aHAHB=UHBaXAXBXaHAHB=aHZRRingOpsB=Z
38 oveq1 aHA=UaHAHB=UHB
39 37 38 syl11 aXaHA=UAXBXaHAHB=aHZRRingOpsB=Z
40 39 3imp aXaHA=UAXBXaHAHB=aHZRRingOpsB=Z
41 40 com13 aHAHB=aHZBXaXaHA=UAXRRingOpsB=Z
42 14 41 syl6 aHAHB=aHAHBaHAHB=aHZBXaXaHA=UAXRRingOpsB=Z
43 42 com15 RRingOpsaHAHB=aHZBXaXaHA=UAXaHAHB=aHAHBB=Z
44 43 3imp1 RRingOpsaHAHB=aHZBXaXaHA=UAXaHAHB=aHAHBB=Z
45 12 44 mpd RRingOpsaHAHB=aHZBXaXaHA=UAXB=Z
46 45 3exp1 RRingOpsaHAHB=aHZBXaXaHA=UAXB=Z
47 6 46 syl5com AHB=ZRRingOpsBXaXaHA=UAXB=Z
48 47 com14 aXaHA=UAXRRingOpsBXAHB=ZB=Z
49 48 3exp aXaHA=UAXRRingOpsBXAHB=ZB=Z
50 49 rexlimiv aXaHA=UAXRRingOpsBXAHB=ZB=Z
51 50 com13 RRingOpsAXaXaHA=UBXAHB=ZB=Z
52 51 3imp RRingOpsAXaXaHA=UBXAHB=ZB=Z