| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zerdivempx.1 |
|
| 2 |
|
zerdivempx.2 |
|
| 3 |
|
zerdivempx.3 |
|
| 4 |
|
zerdivempx.4 |
|
| 5 |
|
zerdivempx.5 |
|
| 6 |
|
oveq2 |
|
| 7 |
|
simpl1 |
|
| 8 |
|
simpr1 |
|
| 9 |
|
simpr3 |
|
| 10 |
|
simpl3 |
|
| 11 |
1 2 4
|
rngoass |
|
| 12 |
7 8 9 10 11
|
syl13anc |
|
| 13 |
|
eqtr |
|
| 14 |
13
|
ex |
|
| 15 |
|
eqtr |
|
| 16 |
3 4 1 2
|
rngorz |
|
| 17 |
16
|
3adant3 |
|
| 18 |
1
|
rneqi |
|
| 19 |
4 18
|
eqtri |
|
| 20 |
2 19 5
|
rngolidm |
|
| 21 |
20
|
3adant2 |
|
| 22 |
|
simp1 |
|
| 23 |
|
simp2 |
|
| 24 |
|
simp3 |
|
| 25 |
22 23 24
|
3eqtr3d |
|
| 26 |
25
|
a1d |
|
| 27 |
26
|
3exp |
|
| 28 |
27
|
com14 |
|
| 29 |
28
|
com13 |
|
| 30 |
17 21 29
|
sylc |
|
| 31 |
30
|
3exp |
|
| 32 |
31
|
com15 |
|
| 33 |
32
|
com24 |
|
| 34 |
15 33
|
syl |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
eqcoms |
|
| 37 |
36
|
com25 |
|
| 38 |
|
oveq1 |
|
| 39 |
37 38
|
syl11 |
|
| 40 |
39
|
3imp |
|
| 41 |
40
|
com13 |
|
| 42 |
14 41
|
syl6 |
|
| 43 |
42
|
com15 |
|
| 44 |
43
|
3imp1 |
|
| 45 |
12 44
|
mpd |
|
| 46 |
45
|
3exp1 |
|
| 47 |
6 46
|
syl5com |
|
| 48 |
47
|
com14 |
|
| 49 |
48
|
3exp |
|
| 50 |
49
|
rexlimiv |
|
| 51 |
50
|
com13 |
|
| 52 |
51
|
3imp |
|