| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zerdivempx.1 |
|- G = ( 1st ` R ) |
| 2 |
|
zerdivempx.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
zerdivempx.3 |
|- Z = ( GId ` G ) |
| 4 |
|
zerdivempx.4 |
|- X = ran G |
| 5 |
|
zerdivempx.5 |
|- U = ( GId ` H ) |
| 6 |
|
oveq2 |
|- ( ( A H B ) = Z -> ( a H ( A H B ) ) = ( a H Z ) ) |
| 7 |
|
simpl1 |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> R e. RingOps ) |
| 8 |
|
simpr1 |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> a e. X ) |
| 9 |
|
simpr3 |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> A e. X ) |
| 10 |
|
simpl3 |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> B e. X ) |
| 11 |
1 2 4
|
rngoass |
|- ( ( R e. RingOps /\ ( a e. X /\ A e. X /\ B e. X ) ) -> ( ( a H A ) H B ) = ( a H ( A H B ) ) ) |
| 12 |
7 8 9 10 11
|
syl13anc |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> ( ( a H A ) H B ) = ( a H ( A H B ) ) ) |
| 13 |
|
eqtr |
|- ( ( ( ( a H A ) H B ) = ( a H ( A H B ) ) /\ ( a H ( A H B ) ) = ( a H Z ) ) -> ( ( a H A ) H B ) = ( a H Z ) ) |
| 14 |
13
|
ex |
|- ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( ( a H A ) H B ) = ( a H Z ) ) ) |
| 15 |
|
eqtr |
|- ( ( ( U H B ) = ( ( a H A ) H B ) /\ ( ( a H A ) H B ) = ( a H Z ) ) -> ( U H B ) = ( a H Z ) ) |
| 16 |
3 4 1 2
|
rngorz |
|- ( ( R e. RingOps /\ a e. X ) -> ( a H Z ) = Z ) |
| 17 |
16
|
3adant3 |
|- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( a H Z ) = Z ) |
| 18 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
| 19 |
4 18
|
eqtri |
|- X = ran ( 1st ` R ) |
| 20 |
2 19 5
|
rngolidm |
|- ( ( R e. RingOps /\ B e. X ) -> ( U H B ) = B ) |
| 21 |
20
|
3adant2 |
|- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( U H B ) = B ) |
| 22 |
|
simp1 |
|- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( U H B ) = ( a H Z ) ) |
| 23 |
|
simp2 |
|- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( U H B ) = B ) |
| 24 |
|
simp3 |
|- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( a H Z ) = Z ) |
| 25 |
22 23 24
|
3eqtr3d |
|- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> B = Z ) |
| 26 |
25
|
a1d |
|- ( ( ( U H B ) = ( a H Z ) /\ ( U H B ) = B /\ ( a H Z ) = Z ) -> ( A e. X -> B = Z ) ) |
| 27 |
26
|
3exp |
|- ( ( U H B ) = ( a H Z ) -> ( ( U H B ) = B -> ( ( a H Z ) = Z -> ( A e. X -> B = Z ) ) ) ) |
| 28 |
27
|
com14 |
|- ( A e. X -> ( ( U H B ) = B -> ( ( a H Z ) = Z -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) |
| 29 |
28
|
com13 |
|- ( ( a H Z ) = Z -> ( ( U H B ) = B -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) |
| 30 |
17 21 29
|
sylc |
|- ( ( R e. RingOps /\ a e. X /\ B e. X ) -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) |
| 31 |
30
|
3exp |
|- ( R e. RingOps -> ( a e. X -> ( B e. X -> ( A e. X -> ( ( U H B ) = ( a H Z ) -> B = Z ) ) ) ) ) |
| 32 |
31
|
com15 |
|- ( ( U H B ) = ( a H Z ) -> ( a e. X -> ( B e. X -> ( A e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 33 |
32
|
com24 |
|- ( ( U H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 34 |
15 33
|
syl |
|- ( ( ( U H B ) = ( ( a H A ) H B ) /\ ( ( a H A ) H B ) = ( a H Z ) ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 35 |
34
|
ex |
|- ( ( U H B ) = ( ( a H A ) H B ) -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 36 |
35
|
eqcoms |
|- ( ( ( a H A ) H B ) = ( U H B ) -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( A e. X -> ( B e. X -> ( a e. X -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 37 |
36
|
com25 |
|- ( ( ( a H A ) H B ) = ( U H B ) -> ( a e. X -> ( A e. X -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 38 |
|
oveq1 |
|- ( ( a H A ) = U -> ( ( a H A ) H B ) = ( U H B ) ) |
| 39 |
37 38
|
syl11 |
|- ( a e. X -> ( ( a H A ) = U -> ( A e. X -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) ) ) |
| 40 |
39
|
3imp |
|- ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( B e. X -> ( ( ( a H A ) H B ) = ( a H Z ) -> ( R e. RingOps -> B = Z ) ) ) ) |
| 41 |
40
|
com13 |
|- ( ( ( a H A ) H B ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> B = Z ) ) ) ) |
| 42 |
14 41
|
syl6 |
|- ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> B = Z ) ) ) ) ) |
| 43 |
42
|
com15 |
|- ( R e. RingOps -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> B = Z ) ) ) ) ) |
| 44 |
43
|
3imp1 |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> ( ( ( a H A ) H B ) = ( a H ( A H B ) ) -> B = Z ) ) |
| 45 |
12 44
|
mpd |
|- ( ( ( R e. RingOps /\ ( a H ( A H B ) ) = ( a H Z ) /\ B e. X ) /\ ( a e. X /\ ( a H A ) = U /\ A e. X ) ) -> B = Z ) |
| 46 |
45
|
3exp1 |
|- ( R e. RingOps -> ( ( a H ( A H B ) ) = ( a H Z ) -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> B = Z ) ) ) ) |
| 47 |
6 46
|
syl5com |
|- ( ( A H B ) = Z -> ( R e. RingOps -> ( B e. X -> ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> B = Z ) ) ) ) |
| 48 |
47
|
com14 |
|- ( ( a e. X /\ ( a H A ) = U /\ A e. X ) -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) |
| 49 |
48
|
3exp |
|- ( a e. X -> ( ( a H A ) = U -> ( A e. X -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) ) |
| 50 |
49
|
rexlimiv |
|- ( E. a e. X ( a H A ) = U -> ( A e. X -> ( R e. RingOps -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) |
| 51 |
50
|
com13 |
|- ( R e. RingOps -> ( A e. X -> ( E. a e. X ( a H A ) = U -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) ) ) |
| 52 |
51
|
3imp |
|- ( ( R e. RingOps /\ A e. X /\ E. a e. X ( a H A ) = U ) -> ( B e. X -> ( ( A H B ) = Z -> B = Z ) ) ) |