Description: Lemma 2 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
Assertion | rngqiprngghmlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | ringrng | |
|
9 | 4 8 | syl | |
10 | 9 | adantr | |
11 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
12 | 11 | adantrr | |
13 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | |
14 | 13 | adantrl | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 | rngacl | |
18 | 10 12 14 17 | syl3anc | |