Metamath Proof Explorer


Theorem rngqiprngimfv

Description: The value of the function F at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngimfv φABFA=A˙1˙·˙A

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 12 a1i φABF=xBx˙1˙·˙x
14 eceq1 x=Ax˙=A˙
15 oveq2 x=A1˙·˙x=1˙·˙A
16 14 15 opeq12d x=Ax˙1˙·˙x=A˙1˙·˙A
17 16 adantl φABx=Ax˙1˙·˙x=A˙1˙·˙A
18 simpr φABAB
19 opex A˙1˙·˙AV
20 19 a1i φABA˙1˙·˙AV
21 13 17 18 20 fvmptd φABFA=A˙1˙·˙A