Metamath Proof Explorer
Description: The value of the function F at an element of (the base set of) a
non-unital ring. (Contributed by AV, 24-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rng2idlring.r |
|
|
|
rng2idlring.i |
|
|
|
rng2idlring.j |
|
|
|
rng2idlring.u |
|
|
|
rng2idlring.b |
|
|
|
rng2idlring.t |
|
|
|
rng2idlring.1 |
|
|
|
rngqiprngim.g |
|
|
|
rngqiprngim.q |
|
|
|
rngqiprngim.c |
|
|
|
rngqiprngim.p |
|
|
|
rngqiprngim.f |
|
|
Assertion |
rngqiprngimfv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
rngqiprngim.c |
|
11 |
|
rngqiprngim.p |
|
12 |
|
rngqiprngim.f |
|
13 |
12
|
a1i |
|
14 |
|
eceq1 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
opeq12d |
|
17 |
16
|
adantl |
|
18 |
|
simpr |
|
19 |
|
opex |
|
20 |
19
|
a1i |
|
21 |
13 17 18 20
|
fvmptd |
|