Metamath Proof Explorer


Theorem rnmptbddlem

Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbddlem.x xφ
rnmptbddlem.b φyxABy
Assertion rnmptbddlem φyzranxABzy

Proof

Step Hyp Ref Expression
1 rnmptbddlem.x xφ
2 rnmptbddlem.b φyxABy
3 eqid xAB=xAB
4 3 elrnmpt zVzranxABxAz=B
5 4 elv zranxABxAz=B
6 nfv xy
7 1 6 nfan xφy
8 nfra1 xxABy
9 7 8 nfan xφyxABy
10 nfv xzy
11 simp3 xAByxAz=Bz=B
12 rspa xAByxABy
13 12 3adant3 xAByxAz=BBy
14 11 13 eqbrtrd xAByxAz=Bzy
15 14 3exp xAByxAz=Bzy
16 15 adantl φyxAByxAz=Bzy
17 9 10 16 rexlimd φyxAByxAz=Bzy
18 17 imp φyxAByxAz=Bzy
19 5 18 sylan2b φyxAByzranxABzy
20 19 ralrimiva φyxAByzranxABzy
21 20 2 reximddv3 φyzranxABzy