Metamath Proof Explorer


Theorem rnpropg

Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017)

Ref Expression
Assertion rnpropg AVBWranACBD=CD

Proof

Step Hyp Ref Expression
1 df-pr ACBD=ACBD
2 1 rneqi ranACBD=ranACBD
3 rnsnopg AVranAC=C
4 3 adantr AVBWranAC=C
5 rnsnopg BWranBD=D
6 5 adantl AVBWranBD=D
7 4 6 uneq12d AVBWranACranBD=CD
8 rnun ranACBD=ranACranBD
9 df-pr CD=CD
10 7 8 9 3eqtr4g AVBWranACBD=CD
11 2 10 eqtrid AVBWranACBD=CD