Metamath Proof Explorer


Theorem rp-brsslt

Description: Binary relation form of a relation, .< , which has been extended from relation R to subsets of class S . Usually, we will assume R Or S . Definition in Alling, p. 2. Generalization of brsslt . (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypothesis nla0001.defsslt <˙=ab|aSbSxaybxRy
Assertion rp-brsslt A<˙BAVBVASBSxAyBxRy

Proof

Step Hyp Ref Expression
1 nla0001.defsslt <˙=ab|aSbSxaybxRy
2 sseq1 a=AaSAS
3 raleq a=AxaybxRyxAybxRy
4 2 3 3anbi13d a=AaSbSxaybxRyASbSxAybxRy
5 sseq1 b=BbSBS
6 raleq b=BybxRyyBxRy
7 6 ralbidv b=BxAybxRyxAyBxRy
8 5 7 3anbi23d b=BASbSxAybxRyASBSxAyBxRy
9 4 8 1 bropabg A<˙BAVBVASBSxAyBxRy