Metamath Proof Explorer


Theorem rpdp2cl

Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses rpdp2cl.a A0
rpdp2cl.b B+
Assertion rpdp2cl Could not format assertion : No typesetting found for |- _ A B e. RR+ with typecode |-

Proof

Step Hyp Ref Expression
1 rpdp2cl.a A0
2 rpdp2cl.b B+
3 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
4 1 nn0rei A
5 rpssre +
6 10nn 10
7 nnrp 1010+
8 6 7 ax-mp 10+
9 rpdivcl B+10+B10+
10 2 8 9 mp2an B10+
11 5 10 sselii B10
12 readdcl AB10A+B10
13 4 11 12 mp2an A+B10
14 4 11 pm3.2i AB10
15 1 nn0ge0i 0A
16 rpgt0 B10+0<B10
17 10 16 ax-mp 0<B10
18 15 17 pm3.2i 0A0<B10
19 addgegt0 AB100A0<B100<A+B10
20 14 18 19 mp2an 0<A+B10
21 elrp A+B10+A+B100<A+B10
22 13 20 21 mpbir2an A+B10+
23 3 22 eqeltri Could not format _ A B e. RR+ : No typesetting found for |- _ A B e. RR+ with typecode |-