Metamath Proof Explorer


Theorem rpmul

Description: If K is relatively prime to M and to N , it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014) (Proof shortened by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion rpmul KMNKgcdM=1KgcdN=1Kgcd M N=1

Proof

Step Hyp Ref Expression
1 mulgcddvds KMNKgcd M NKgcdMKgcdN
2 oveq12 KgcdM=1KgcdN=1KgcdMKgcdN=11
3 1t1e1 11=1
4 2 3 eqtrdi KgcdM=1KgcdN=1KgcdMKgcdN=1
5 4 breq2d KgcdM=1KgcdN=1Kgcd M NKgcdMKgcdNKgcd M N1
6 1 5 syl5ibcom KMNKgcdM=1KgcdN=1Kgcd M N1
7 simp1 KMNK
8 zmulcl MN M N
9 8 3adant1 KMN M N
10 7 9 gcdcld KMNKgcd M N0
11 dvds1 Kgcd M N0Kgcd M N1Kgcd M N=1
12 10 11 syl KMNKgcd M N1Kgcd M N=1
13 6 12 sylibd KMNKgcdM=1KgcdN=1Kgcd M N=1