Metamath Proof Explorer


Theorem mulgcddvds

Description: One half of rpmulgcd2 , which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion mulgcddvds KMNKgcd M NKgcdMKgcdN

Proof

Step Hyp Ref Expression
1 simp1 KMNK
2 simp2 KMNM
3 simp3 KMNN
4 2 3 zmulcld KMN M N
5 1 4 gcdcld KMNKgcd M N0
6 5 nn0zd KMNKgcd M N
7 dvds0 Kgcd M NKgcd M N0
8 6 7 syl KMNKgcd M N0
9 8 adantr KMNKgcdN=0Kgcd M N0
10 oveq2 KgcdN=0KgcdMKgcdN=KgcdM0
11 1 2 gcdcld KMNKgcdM0
12 11 nn0cnd KMNKgcdM
13 12 mul01d KMNKgcdM0=0
14 10 13 sylan9eqr KMNKgcdN=0KgcdMKgcdN=0
15 9 14 breqtrrd KMNKgcdN=0Kgcd M NKgcdMKgcdN
16 6 adantr KMNKgcdN0Kgcd M N
17 16 zcnd KMNKgcdN0Kgcd M N
18 1 3 gcdcld KMNKgcdN0
19 18 nn0zd KMNKgcdN
20 19 adantr KMNKgcdN0KgcdN
21 20 zcnd KMNKgcdN0KgcdN
22 simpr KMNKgcdN0KgcdN0
23 17 21 22 divcan1d KMNKgcdN0Kgcd M NKgcdNKgcdN=Kgcd M N
24 gcddvds K M NKgcd M NKKgcd M N M N
25 1 4 24 syl2anc KMNKgcd M NKKgcd M N M N
26 25 simpld KMNKgcd M NK
27 6 1 19 26 dvdsmultr1d KMNKgcd M NKKgcdN
28 27 adantr KMNKgcdN0Kgcd M NKKgcdN
29 23 28 eqbrtrd KMNKgcdN0Kgcd M NKgcdNKgcdNKKgcdN
30 gcddvds KNKgcdNKKgcdNN
31 1 3 30 syl2anc KMNKgcdNKKgcdNN
32 31 simpld KMNKgcdNK
33 31 simprd KMNKgcdNN
34 dvdsmultr2 KgcdNMNKgcdNNKgcdN M N
35 19 2 3 34 syl3anc KMNKgcdNNKgcdN M N
36 33 35 mpd KMNKgcdN M N
37 dvdsgcd KgcdNK M NKgcdNKKgcdN M NKgcdNKgcd M N
38 19 1 4 37 syl3anc KMNKgcdNKKgcdN M NKgcdNKgcd M N
39 32 36 38 mp2and KMNKgcdNKgcd M N
40 39 adantr KMNKgcdN0KgcdNKgcd M N
41 dvdsval2 KgcdNKgcdN0Kgcd M NKgcdNKgcd M NKgcd M NKgcdN
42 20 22 16 41 syl3anc KMNKgcdN0KgcdNKgcd M NKgcd M NKgcdN
43 40 42 mpbid KMNKgcdN0Kgcd M NKgcdN
44 1 adantr KMNKgcdN0K
45 dvdsmulcr Kgcd M NKgcdNKKgcdNKgcdN0Kgcd M NKgcdNKgcdNKKgcdNKgcd M NKgcdNK
46 43 44 20 22 45 syl112anc KMNKgcdN0Kgcd M NKgcdNKgcdNKKgcdNKgcd M NKgcdNK
47 29 46 mpbid KMNKgcdN0Kgcd M NKgcdNK
48 nn0abscl MM0
49 2 48 syl KMNM0
50 49 nn0zd KMNM
51 dvdsmultr2 Kgcd M NMKKgcd M NKKgcd M NMK
52 6 50 1 51 syl3anc KMNKgcd M NKKgcd M NMK
53 26 52 mpd KMNKgcd M NMK
54 50 3 zmulcld KMNM N
55 25 simprd KMNKgcd M N M N
56 iddvds MMM
57 2 56 syl KMNMM
58 dvdsabsb MMMMMM
59 2 2 58 syl2anc KMNMMMM
60 57 59 mpbid KMNMM
61 dvdsmulc MMNMM M NM N
62 2 50 3 61 syl3anc KMNMM M NM N
63 60 62 mpd KMN M NM N
64 6 4 54 55 63 dvdstrd KMNKgcd M NM N
65 50 1 zmulcld KMNMK
66 dvdsgcd Kgcd M NMKM NKgcd M NMKKgcd M NM NKgcd M NMKgcdM N
67 6 65 54 66 syl3anc KMNKgcd M NMKKgcd M NM NKgcd M NMKgcdM N
68 53 64 67 mp2and KMNKgcd M NMKgcdM N
69 18 nn0red KMNKgcdN
70 18 nn0ge0d KMN0KgcdN
71 69 70 absidd KMNKgcdN=KgcdN
72 71 oveq2d KMNMKgcdN=MKgcdN
73 2 zcnd KMNM
74 18 nn0cnd KMNKgcdN
75 73 74 absmuld KMNMKgcdN=MKgcdN
76 mulgcd M0KNMKgcdM N=MKgcdN
77 49 1 3 76 syl3anc KMNMKgcdM N=MKgcdN
78 72 75 77 3eqtr4d KMNMKgcdN=MKgcdM N
79 68 78 breqtrrd KMNKgcd M NMKgcdN
80 2 19 zmulcld KMNMKgcdN
81 dvdsabsb Kgcd M NMKgcdNKgcd M NMKgcdNKgcd M NMKgcdN
82 6 80 81 syl2anc KMNKgcd M NMKgcdNKgcd M NMKgcdN
83 79 82 mpbird KMNKgcd M NMKgcdN
84 83 adantr KMNKgcdN0Kgcd M NMKgcdN
85 23 84 eqbrtrd KMNKgcdN0Kgcd M NKgcdNKgcdNMKgcdN
86 2 adantr KMNKgcdN0M
87 dvdsmulcr Kgcd M NKgcdNMKgcdNKgcdN0Kgcd M NKgcdNKgcdNMKgcdNKgcd M NKgcdNM
88 43 86 20 22 87 syl112anc KMNKgcdN0Kgcd M NKgcdNKgcdNMKgcdNKgcd M NKgcdNM
89 85 88 mpbid KMNKgcdN0Kgcd M NKgcdNM
90 dvdsgcd Kgcd M NKgcdNKMKgcd M NKgcdNKKgcd M NKgcdNMKgcd M NKgcdNKgcdM
91 43 44 86 90 syl3anc KMNKgcdN0Kgcd M NKgcdNKKgcd M NKgcdNMKgcd M NKgcdNKgcdM
92 47 89 91 mp2and KMNKgcdN0Kgcd M NKgcdNKgcdM
93 11 nn0zd KMNKgcdM
94 93 adantr KMNKgcdN0KgcdM
95 dvdsmulc Kgcd M NKgcdNKgcdMKgcdNKgcd M NKgcdNKgcdMKgcd M NKgcdNKgcdNKgcdMKgcdN
96 43 94 20 95 syl3anc KMNKgcdN0Kgcd M NKgcdNKgcdMKgcd M NKgcdNKgcdNKgcdMKgcdN
97 92 96 mpd KMNKgcdN0Kgcd M NKgcdNKgcdNKgcdMKgcdN
98 23 97 eqbrtrrd KMNKgcdN0Kgcd M NKgcdMKgcdN
99 15 98 pm2.61dane KMNKgcd M NKgcdMKgcdN