Metamath Proof Explorer


Theorem rprpwr

Description: If A and B are relatively prime, then so are A and B ^ N . Originally a subproof of rppwr . (Contributed by SN, 21-Aug-2024)

Ref Expression
Assertion rprpwr ABNAgcdB=1AgcdBN=1

Proof

Step Hyp Ref Expression
1 rplpwr BANBgcdA=1BNgcdA=1
2 1 3com12 ABNBgcdA=1BNgcdA=1
3 nnz AA
4 nnz BB
5 gcdcom ABAgcdB=BgcdA
6 3 4 5 syl2an ABAgcdB=BgcdA
7 6 3adant3 ABNAgcdB=BgcdA
8 7 eqeq1d ABNAgcdB=1BgcdA=1
9 simp1 ABNA
10 9 nnzd ABNA
11 simp2 ABNB
12 simp3 ABNN
13 12 nnnn0d ABNN0
14 11 13 nnexpcld ABNBN
15 14 nnzd ABNBN
16 10 15 gcdcomd ABNAgcdBN=BNgcdA
17 16 eqeq1d ABNAgcdBN=1BNgcdA=1
18 2 8 17 3imtr4d ABNAgcdB=1AgcdBN=1