Metamath Proof Explorer


Theorem rpxdivcld

Description: Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Hypotheses rpxdivcld.1 φA+
rpxdivcld.2 φB+
Assertion rpxdivcld φA÷𝑒B+

Proof

Step Hyp Ref Expression
1 rpxdivcld.1 φA+
2 rpxdivcld.2 φB+
3 1 rpred φA
4 2 rpred φB
5 2 rpne0d φB0
6 rexdiv ABB0A÷𝑒B=AB
7 3 4 5 6 syl3anc φA÷𝑒B=AB
8 1 2 rpdivcld φAB+
9 7 8 eqeltrd φA÷𝑒B+