Metamath Proof Explorer


Theorem rrgval

Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e E=RLRegR
rrgval.b B=BaseR
rrgval.t ·˙=R
rrgval.z 0˙=0R
Assertion rrgval E=xB|yBx·˙y=0˙y=0˙

Proof

Step Hyp Ref Expression
1 rrgval.e E=RLRegR
2 rrgval.b B=BaseR
3 rrgval.t ·˙=R
4 rrgval.z 0˙=0R
5 fveq2 r=RBaser=BaseR
6 5 2 eqtr4di r=RBaser=B
7 fveq2 r=Rr=R
8 7 3 eqtr4di r=Rr=·˙
9 8 oveqd r=Rxry=x·˙y
10 fveq2 r=R0r=0R
11 10 4 eqtr4di r=R0r=0˙
12 9 11 eqeq12d r=Rxry=0rx·˙y=0˙
13 11 eqeq2d r=Ry=0ry=0˙
14 12 13 imbi12d r=Rxry=0ry=0rx·˙y=0˙y=0˙
15 6 14 raleqbidv r=RyBaserxry=0ry=0ryBx·˙y=0˙y=0˙
16 6 15 rabeqbidv r=RxBaser|yBaserxry=0ry=0r=xB|yBx·˙y=0˙y=0˙
17 df-rlreg RLReg=rVxBaser|yBaserxry=0ry=0r
18 2 fvexi BV
19 18 rabex xB|yBx·˙y=0˙y=0˙V
20 16 17 19 fvmpt RVRLRegR=xB|yBx·˙y=0˙y=0˙
21 fvprc ¬RVRLRegR=
22 fvprc ¬RVBaseR=
23 2 22 eqtrid ¬RVB=
24 23 rabeqdv ¬RVxB|yBx·˙y=0˙y=0˙=x|yBx·˙y=0˙y=0˙
25 rab0 x|yBx·˙y=0˙y=0˙=
26 24 25 eqtrdi ¬RVxB|yBx·˙y=0˙y=0˙=
27 21 26 eqtr4d ¬RVRLRegR=xB|yBx·˙y=0˙y=0˙
28 20 27 pm2.61i RLRegR=xB|yBx·˙y=0˙y=0˙
29 1 28 eqtri E=xB|yBx·˙y=0˙y=0˙