Metamath Proof Explorer


Theorem rrndsxmet

Description: D is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrndsxmet.1 φXFin
rrndsxmet.2 D=fX,gXkXfkgk2
Assertion rrndsxmet φD∞MetX

Proof

Step Hyp Ref Expression
1 rrndsxmet.1 φXFin
2 rrndsxmet.2 D=fX,gXkXfkgk2
3 1 2 rrndsmet φDMetX
4 metxmet DMetXD∞MetX
5 3 4 syl φD∞MetX