Metamath Proof Explorer


Theorem rrx2plord2

Description: The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
rrx2plord2.r R=12
Assertion rrx2plord2 XRYRX1=Y1XOYX2<Y2

Proof

Step Hyp Ref Expression
1 rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
2 rrx2plord2.r R=12
3 1 rrx2plord XRYRXOYX1<Y1X1=Y1X2<Y2
4 3 3adant3 XRYRX1=Y1XOYX1<Y1X1=Y1X2<Y2
5 eqid 12=12
6 5 2 rrx2pxel XRX1
7 6 adantr XRYRX1
8 ltne X1X1<Y1Y1X1
9 8 necomd X1X1<Y1X1Y1
10 7 9 sylan XRYRX1<Y1X1Y1
11 10 ex XRYRX1<Y1X1Y1
12 eqneqall X1=Y1X1Y1X2<Y2
13 11 12 syl9 XRYRX1=Y1X1<Y1X2<Y2
14 13 3impia XRYRX1=Y1X1<Y1X2<Y2
15 14 com12 X1<Y1XRYRX1=Y1X2<Y2
16 simpr X1=Y1X2<Y2X2<Y2
17 16 a1d X1=Y1X2<Y2XRYRX1=Y1X2<Y2
18 15 17 jaoi X1<Y1X1=Y1X2<Y2XRYRX1=Y1X2<Y2
19 18 com12 XRYRX1=Y1X1<Y1X1=Y1X2<Y2X2<Y2
20 olc X1=Y1X2<Y2X1<Y1X1=Y1X2<Y2
21 20 ex X1=Y1X2<Y2X1<Y1X1=Y1X2<Y2
22 21 3ad2ant3 XRYRX1=Y1X2<Y2X1<Y1X1=Y1X2<Y2
23 19 22 impbid XRYRX1=Y1X1<Y1X1=Y1X2<Y2X2<Y2
24 4 23 bitrd XRYRX1=Y1XOYX2<Y2