Metamath Proof Explorer


Theorem ruclem7

Description: Lemma for ruc . Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruc.4 C=001F
ruc.5 G=seq0DC
Assertion ruclem7 φN0GN+1=GNDFN+1

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruc.4 C=001F
4 ruc.5 G=seq0DC
5 simpr φN0N0
6 nn0uz 0=0
7 5 6 eleqtrdi φN0N0
8 seqp1 N0seq0DCN+1=seq0DCNDCN+1
9 7 8 syl φN0seq0DCN+1=seq0DCNDCN+1
10 4 fveq1i GN+1=seq0DCN+1
11 4 fveq1i GN=seq0DCN
12 11 oveq1i GNDCN+1=seq0DCNDCN+1
13 9 10 12 3eqtr4g φN0GN+1=GNDCN+1
14 nn0p1nn N0N+1
15 14 adantl φN0N+1
16 15 nnne0d φN0N+10
17 16 necomd φN00N+1
18 3 equncomi C=F001
19 18 fveq1i CN+1=F001N+1
20 fvunsn 0N+1F001N+1=FN+1
21 19 20 eqtrid 0N+1CN+1=FN+1
22 17 21 syl φN0CN+1=FN+1
23 22 oveq2d φN0GNDCN+1=GNDFN+1
24 13 23 eqtrd φN0GN+1=GNDFN+1