Description: If all the preimages of right-closed, unbounded below intervals, belong to a sigma-algebra, then all the preimages of right-open, unbounded below intervals, belong to the sigma-algebra. (ii) implies (i) in Proposition 121B of Fremlin1 p. 36. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | salpreimalelt.x | |
|
salpreimalelt.a | |
||
salpreimalelt.s | |
||
salpreimalelt.u | |
||
salpreimalelt.b | |
||
salpreimalelt.p | |
||
salpreimalelt.c | |
||
Assertion | salpreimalelt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salpreimalelt.x | |
|
2 | salpreimalelt.a | |
|
3 | salpreimalelt.s | |
|
4 | salpreimalelt.u | |
|
5 | salpreimalelt.b | |
|
6 | salpreimalelt.p | |
|
7 | salpreimalelt.c | |
|
8 | nfv | |
|
9 | 1 8 | nfan | |
10 | nfv | |
|
11 | 3 | adantr | |
12 | 5 | adantlr | |
13 | nfv | |
|
14 | 1 13 | nfan | |
15 | nfv | |
|
16 | 2 15 | nfan | |
17 | 3 | adantr | |
18 | 5 | adantlr | |
19 | 6 | adantlr | |
20 | simpr | |
|
21 | 14 16 17 4 18 19 20 | salpreimalegt | |
22 | 21 | adantlr | |
23 | simpr | |
|
24 | 9 10 11 12 22 23 | salpreimagtge | |
25 | 1 2 3 4 5 24 7 | salpreimagelt | |