Metamath Proof Explorer


Theorem sbcfng

Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018)

Ref Expression
Assertion sbcfng X V [˙X / x]˙ F Fn A X / x F Fn X / x A

Proof

Step Hyp Ref Expression
1 df-fn F Fn A Fun F dom F = A
2 1 a1i X V F Fn A Fun F dom F = A
3 2 sbcbidv X V [˙X / x]˙ F Fn A [˙X / x]˙ Fun F dom F = A
4 sbcfung X V [˙X / x]˙ Fun F Fun X / x F
5 sbceqg X V [˙X / x]˙ dom F = A X / x dom F = X / x A
6 csbdm X / x dom F = dom X / x F
7 6 eqeq1i X / x dom F = X / x A dom X / x F = X / x A
8 5 7 bitrdi X V [˙X / x]˙ dom F = A dom X / x F = X / x A
9 4 8 anbi12d X V [˙X / x]˙ Fun F [˙X / x]˙ dom F = A Fun X / x F dom X / x F = X / x A
10 sbcan [˙X / x]˙ Fun F dom F = A [˙X / x]˙ Fun F [˙X / x]˙ dom F = A
11 df-fn X / x F Fn X / x A Fun X / x F dom X / x F = X / x A
12 9 10 11 3bitr4g X V [˙X / x]˙ Fun F dom F = A X / x F Fn X / x A
13 3 12 bitrd X V [˙X / x]˙ F Fn A X / x F Fn X / x A