Metamath Proof Explorer


Theorem sbcie3s

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses sbcie3s.a A=EW
sbcie3s.b B=FW
sbcie3s.c C=GW
sbcie3s.1 a=Ab=Bc=Cφψ
Assertion sbcie3s w=W[˙Ew/a]˙[˙Fw/b]˙[˙Gw/c]˙ψφ

Proof

Step Hyp Ref Expression
1 sbcie3s.a A=EW
2 sbcie3s.b B=FW
3 sbcie3s.c C=GW
4 sbcie3s.1 a=Ab=Bc=Cφψ
5 fvexd w=WEwV
6 fvexd w=Wa=EwFwV
7 fvexd w=Wa=Ewb=FwGwV
8 simpllr w=Wa=Ewb=Fwc=Gwa=Ew
9 fveq2 w=WEw=EW
10 9 ad3antrrr w=Wa=Ewb=Fwc=GwEw=EW
11 8 10 eqtrd w=Wa=Ewb=Fwc=Gwa=EW
12 11 1 eqtr4di w=Wa=Ewb=Fwc=Gwa=A
13 simplr w=Wa=Ewb=Fwc=Gwb=Fw
14 fveq2 w=WFw=FW
15 14 ad3antrrr w=Wa=Ewb=Fwc=GwFw=FW
16 13 15 eqtrd w=Wa=Ewb=Fwc=Gwb=FW
17 16 2 eqtr4di w=Wa=Ewb=Fwc=Gwb=B
18 simpr w=Wa=Ewb=Fwc=Gwc=Gw
19 fveq2 w=WGw=GW
20 19 ad3antrrr w=Wa=Ewb=Fwc=GwGw=GW
21 18 20 eqtrd w=Wa=Ewb=Fwc=Gwc=GW
22 21 3 eqtr4di w=Wa=Ewb=Fwc=Gwc=C
23 12 17 22 4 syl3anc w=Wa=Ewb=Fwc=Gwφψ
24 23 bicomd w=Wa=Ewb=Fwc=Gwψφ
25 7 24 sbcied w=Wa=Ewb=Fw[˙Gw/c]˙ψφ
26 6 25 sbcied w=Wa=Ew[˙Fw/b]˙[˙Gw/c]˙ψφ
27 5 26 sbcied w=W[˙Ew/a]˙[˙Fw/b]˙[˙Gw/c]˙ψφ