Metamath Proof Explorer


Theorem sbthlem8

Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
sbthlem.3 H=fDg-1AD
Assertion sbthlem8 Funf-1Fungdomg=BrangAFung-1FunH-1

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 sbthlem.3 H=fDg-1AD
4 funres11 Funf-1FunfD-1
5 funcnvcnv FungFung-1-1
6 funres11 Fung-1-1Fung-1AD-1
7 5 6 syl FungFung-1AD-1
8 7 ad3antrrr Fungdomg=BrangAFung-1Fung-1AD-1
9 4 8 anim12i Funf-1Fungdomg=BrangAFung-1FunfD-1Fung-1AD-1
10 df-ima fD=ranfD
11 df-rn ranfD=domfD-1
12 10 11 eqtr2i domfD-1=fD
13 df-ima g-1AD=rang-1AD
14 df-rn rang-1AD=domg-1AD-1
15 13 14 eqtri g-1AD=domg-1AD-1
16 1 2 sbthlem4 domg=BrangAFung-1g-1AD=BfD
17 15 16 eqtr3id domg=BrangAFung-1domg-1AD-1=BfD
18 ineq12 domfD-1=fDdomg-1AD-1=BfDdomfD-1domg-1AD-1=fDBfD
19 12 17 18 sylancr domg=BrangAFung-1domfD-1domg-1AD-1=fDBfD
20 disjdif fDBfD=
21 19 20 eqtrdi domg=BrangAFung-1domfD-1domg-1AD-1=
22 21 adantlll Fungdomg=BrangAFung-1domfD-1domg-1AD-1=
23 22 adantl Funf-1Fungdomg=BrangAFung-1domfD-1domg-1AD-1=
24 funun FunfD-1Fung-1AD-1domfD-1domg-1AD-1=FunfD-1g-1AD-1
25 9 23 24 syl2anc Funf-1Fungdomg=BrangAFung-1FunfD-1g-1AD-1
26 3 cnveqi H-1=fDg-1AD-1
27 cnvun fDg-1AD-1=fD-1g-1AD-1
28 26 27 eqtri H-1=fD-1g-1AD-1
29 28 funeqi FunH-1FunfD-1g-1AD-1
30 25 29 sylibr Funf-1Fungdomg=BrangAFung-1FunH-1