Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbthlem.1 | |
|
sbthlem.2 | |
||
sbthlem.3 | |
||
Assertion | sbthlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | |
|
2 | sbthlem.2 | |
|
3 | sbthlem.3 | |
|
4 | funres11 | |
|
5 | funcnvcnv | |
|
6 | funres11 | |
|
7 | 5 6 | syl | |
8 | 7 | ad3antrrr | |
9 | 4 8 | anim12i | |
10 | df-ima | |
|
11 | df-rn | |
|
12 | 10 11 | eqtr2i | |
13 | df-ima | |
|
14 | df-rn | |
|
15 | 13 14 | eqtri | |
16 | 1 2 | sbthlem4 | |
17 | 15 16 | eqtr3id | |
18 | ineq12 | |
|
19 | 12 17 18 | sylancr | |
20 | disjdif | |
|
21 | 19 20 | eqtrdi | |
22 | 21 | adantlll | |
23 | 22 | adantl | |
24 | funun | |
|
25 | 9 23 24 | syl2anc | |
26 | 3 | cnveqi | |
27 | cnvun | |
|
28 | 26 27 | eqtri | |
29 | 28 | funeqi | |
30 | 25 29 | sylibr | |