Metamath Proof Explorer


Theorem seqcaopr

Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses seqcaopr.1 φxSySx+˙yS
seqcaopr.2 φxSySx+˙y=y+˙x
seqcaopr.3 φxSySzSx+˙y+˙z=x+˙y+˙z
seqcaopr.4 φNM
seqcaopr.5 φkMNFkS
seqcaopr.6 φkMNGkS
seqcaopr.7 φkMNHk=Fk+˙Gk
Assertion seqcaopr φseqM+˙HN=seqM+˙FN+˙seqM+˙GN

Proof

Step Hyp Ref Expression
1 seqcaopr.1 φxSySx+˙yS
2 seqcaopr.2 φxSySx+˙y=y+˙x
3 seqcaopr.3 φxSySzSx+˙y+˙z=x+˙y+˙z
4 seqcaopr.4 φNM
5 seqcaopr.5 φkMNFkS
6 seqcaopr.6 φkMNGkS
7 seqcaopr.7 φkMNHk=Fk+˙Gk
8 1 caovclg φaSbSa+˙bS
9 simpl φaSbScSdSφ
10 simprrl φaSbScSdScS
11 simprlr φaSbScSdSbS
12 2 caovcomg φcSbSc+˙b=b+˙c
13 9 10 11 12 syl12anc φaSbScSdSc+˙b=b+˙c
14 13 oveq1d φaSbScSdSc+˙b+˙d=b+˙c+˙d
15 simprrr φaSbScSdSdS
16 3 caovassg φcSbSdSc+˙b+˙d=c+˙b+˙d
17 9 10 11 15 16 syl13anc φaSbScSdSc+˙b+˙d=c+˙b+˙d
18 3 caovassg φbScSdSb+˙c+˙d=b+˙c+˙d
19 9 11 10 15 18 syl13anc φaSbScSdSb+˙c+˙d=b+˙c+˙d
20 14 17 19 3eqtr3d φaSbScSdSc+˙b+˙d=b+˙c+˙d
21 20 oveq2d φaSbScSdSa+˙c+˙b+˙d=a+˙b+˙c+˙d
22 simprll φaSbScSdSaS
23 1 caovclg φbSdSb+˙dS
24 9 11 15 23 syl12anc φaSbScSdSb+˙dS
25 3 caovassg φaScSb+˙dSa+˙c+˙b+˙d=a+˙c+˙b+˙d
26 9 22 10 24 25 syl13anc φaSbScSdSa+˙c+˙b+˙d=a+˙c+˙b+˙d
27 1 caovclg φcSdSc+˙dS
28 27 adantrl φaSbScSdSc+˙dS
29 3 caovassg φaSbSc+˙dSa+˙b+˙c+˙d=a+˙b+˙c+˙d
30 9 22 11 28 29 syl13anc φaSbScSdSa+˙b+˙c+˙d=a+˙b+˙c+˙d
31 21 26 30 3eqtr4d φaSbScSdSa+˙c+˙b+˙d=a+˙b+˙c+˙d
32 8 8 31 4 5 6 7 seqcaopr2 φseqM+˙HN=seqM+˙FN+˙seqM+˙GN