Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | seqcaopr.1 | |
|
seqcaopr.2 | |
||
seqcaopr.3 | |
||
seqcaopr.4 | |
||
seqcaopr.5 | |
||
seqcaopr.6 | |
||
seqcaopr.7 | |
||
Assertion | seqcaopr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr.1 | |
|
2 | seqcaopr.2 | |
|
3 | seqcaopr.3 | |
|
4 | seqcaopr.4 | |
|
5 | seqcaopr.5 | |
|
6 | seqcaopr.6 | |
|
7 | seqcaopr.7 | |
|
8 | 1 | caovclg | |
9 | simpl | |
|
10 | simprrl | |
|
11 | simprlr | |
|
12 | 2 | caovcomg | |
13 | 9 10 11 12 | syl12anc | |
14 | 13 | oveq1d | |
15 | simprrr | |
|
16 | 3 | caovassg | |
17 | 9 10 11 15 16 | syl13anc | |
18 | 3 | caovassg | |
19 | 9 11 10 15 18 | syl13anc | |
20 | 14 17 19 | 3eqtr3d | |
21 | 20 | oveq2d | |
22 | simprll | |
|
23 | 1 | caovclg | |
24 | 9 11 15 23 | syl12anc | |
25 | 3 | caovassg | |
26 | 9 22 10 24 25 | syl13anc | |
27 | 1 | caovclg | |
28 | 27 | adantrl | |
29 | 3 | caovassg | |
30 | 9 22 11 28 29 | syl13anc | |
31 | 21 26 30 | 3eqtr4d | |
32 | 8 8 31 4 5 6 7 | seqcaopr2 | |