Metamath Proof Explorer


Theorem seqf2

Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl2.1 φFMC
seqcl2.2 φxCyDx+˙yC
seqf2.3 Z=M
seqf2.4 φM
seqf2.5 φxM+1FxD
Assertion seqf2 φseqM+˙F:ZC

Proof

Step Hyp Ref Expression
1 seqcl2.1 φFMC
2 seqcl2.2 φxCyDx+˙yC
3 seqf2.3 Z=M
4 seqf2.4 φM
5 seqf2.5 φxM+1FxD
6 seqfn MseqM+˙FFnM
7 4 6 syl φseqM+˙FFnM
8 1 adantr φkMFMC
9 2 adantlr φkMxCyDx+˙yC
10 simpr φkMkM
11 elfzuz xM+1kxM+1
12 11 5 sylan2 φxM+1kFxD
13 12 adantlr φkMxM+1kFxD
14 8 9 10 13 seqcl2 φkMseqM+˙FkC
15 14 ralrimiva φkMseqM+˙FkC
16 ffnfv seqM+˙F:MCseqM+˙FFnMkMseqM+˙FkC
17 7 15 16 sylanbrc φseqM+˙F:MC
18 3 feq2i seqM+˙F:ZCseqM+˙F:MC
19 17 18 sylibr φseqM+˙F:ZC