Metamath Proof Explorer


Theorem seqomlem3

Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqomlem.a Q=reciω,vVsuciiFvII
Assertion seqomlem3 Qω=II

Proof

Step Hyp Ref Expression
1 seqomlem.a Q=reciω,vVsuciiFvII
2 peano1 ω
3 fvres ωQω=Q
4 2 3 ax-mp Qω=Q
5 1 fveq1i Q=reciω,vVsuciiFvII
6 opex IIV
7 6 rdg0 reciω,vVsuciiFvII=II
8 4 5 7 3eqtri Qω=II
9 frfnom reciω,vVsuciiFvIIωFnω
10 1 reseq1i Qω=reciω,vVsuciiFvIIω
11 10 fneq1i QωFnωreciω,vVsuciiFvIIωFnω
12 9 11 mpbir QωFnω
13 fnfvelrn QωFnωωQωranQω
14 12 2 13 mp2an QωranQω
15 8 14 eqeltrri IIranQω
16 df-ima Qω=ranQω
17 15 16 eleqtrri IIQω
18 df-br QωIIIIQω
19 17 18 mpbir QωII
20 1 seqomlem2 QωFnω
21 fnbrfvb QωFnωωQω=IIQωII
22 20 2 21 mp2an Qω=IIQωII
23 19 22 mpbir Qω=II