Metamath Proof Explorer


Theorem serge0

Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serge0.1 φNM
serge0.2 φkMNFk
serge0.3 φkMN0Fk
Assertion serge0 φ0seqM+FN

Proof

Step Hyp Ref Expression
1 serge0.1 φNM
2 serge0.2 φkMNFk
3 serge0.3 φkMN0Fk
4 breq2 x=Fk0x0Fk
5 4 2 3 elrabd φkMNFkx|0x
6 breq2 x=k0x0k
7 6 elrab kx|0xk0k
8 breq2 x=y0x0y
9 8 elrab yx|0xy0y
10 breq2 x=k+y0x0k+y
11 readdcl kyk+y
12 11 ad2ant2r k0ky0yk+y
13 addge0 ky0k0y0k+y
14 13 an4s k0ky0y0k+y
15 10 12 14 elrabd k0ky0yk+yx|0x
16 7 9 15 syl2anb kx|0xyx|0xk+yx|0x
17 16 adantl φkx|0xyx|0xk+yx|0x
18 1 5 17 seqcl φseqM+FNx|0x
19 breq2 x=seqM+FN0x0seqM+FN
20 19 elrab seqM+FNx|0xseqM+FN0seqM+FN
21 20 simprbi seqM+FNx|0x0seqM+FN
22 18 21 syl φ0seqM+FN