Metamath Proof Explorer


Theorem setindregs

Description: Set (epsilon) induction. This version of setind replaces zfregs with axregszf . (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion setindregs x x A x A A = V

Proof

Step Hyp Ref Expression
1 ssindif0 y A y V A =
2 sseq1 x = y x A y A
3 eleq1w x = y x A y A
4 2 3 imbi12d x = y x A x A y A y A
5 4 spvv x x A x A y A y A
6 1 5 biimtrrid x x A x A y V A = y A
7 eldifn y V A ¬ y A
8 6 7 nsyli x x A x A y V A ¬ y V A =
9 8 imp x x A x A y V A ¬ y V A =
10 9 nrexdv x x A x A ¬ y V A y V A =
11 axregszf V A y V A y V A =
12 11 necon1bi ¬ y V A y V A = V A =
13 10 12 syl x x A x A V A =
14 vdif0 A = V V A =
15 13 14 sylibr x x A x A A = V