Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by Scott Fenton, 10-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | setinds.1 | |
|
Assertion | setinds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setinds.1 | |
|
2 | vex | |
|
3 | setind | |
|
4 | dfss3 | |
|
5 | df-sbc | |
|
6 | 5 | ralbii | |
7 | nfcv | |
|
8 | nfsbc1v | |
|
9 | 7 8 | nfralw | |
10 | nfsbc1v | |
|
11 | 9 10 | nfim | |
12 | raleq | |
|
13 | sbceq1a | |
|
14 | 12 13 | imbi12d | |
15 | 11 14 1 | chvarfv | |
16 | 6 15 | sylbir | |
17 | 4 16 | sylbi | |
18 | df-sbc | |
|
19 | 17 18 | sylib | |
20 | 3 19 | mpg | |
21 | 20 | eqcomi | |
22 | 21 | eqabri | |
23 | 2 22 | mpbi | |