Metamath Proof Explorer


Theorem setinds

Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by Scott Fenton, 10-Mar-2011)

Ref Expression
Hypothesis setinds.1 yx[˙y/x]˙φφ
Assertion setinds φ

Proof

Step Hyp Ref Expression
1 setinds.1 yx[˙y/x]˙φφ
2 vex xV
3 setind zzx|φzx|φx|φ=V
4 dfss3 zx|φyzyx|φ
5 df-sbc [˙y/x]˙φyx|φ
6 5 ralbii yz[˙y/x]˙φyzyx|φ
7 nfcv _xz
8 nfsbc1v x[˙y/x]˙φ
9 7 8 nfralw xyz[˙y/x]˙φ
10 nfsbc1v x[˙z/x]˙φ
11 9 10 nfim xyz[˙y/x]˙φ[˙z/x]˙φ
12 raleq x=zyx[˙y/x]˙φyz[˙y/x]˙φ
13 sbceq1a x=zφ[˙z/x]˙φ
14 12 13 imbi12d x=zyx[˙y/x]˙φφyz[˙y/x]˙φ[˙z/x]˙φ
15 11 14 1 chvarfv yz[˙y/x]˙φ[˙z/x]˙φ
16 6 15 sylbir yzyx|φ[˙z/x]˙φ
17 4 16 sylbi zx|φ[˙z/x]˙φ
18 df-sbc [˙z/x]˙φzx|φ
19 17 18 sylib zx|φzx|φ
20 3 19 mpg x|φ=V
21 20 eqcomi V=x|φ
22 21 eqabri xVφ
23 2 22 mpbi φ