Description: Set induction scheme without Infinity. See comments at setindtr . (Contributed by Stefan O'Rear, 28-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setindtrs.a | |
|
setindtrs.b | |
||
setindtrs.c | |
||
Assertion | setindtrs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setindtrs.a | |
|
2 | setindtrs.b | |
|
3 | setindtrs.c | |
|
4 | setindtr | |
|
5 | dfss3 | |
|
6 | nfcv | |
|
7 | nfsab1 | |
|
8 | 6 7 | nfralw | |
9 | nfsab1 | |
|
10 | 8 9 | nfim | |
11 | raleq | |
|
12 | eleq1w | |
|
13 | 11 12 | imbi12d | |
14 | vex | |
|
15 | 14 2 | elab | |
16 | 15 | ralbii | |
17 | abid | |
|
18 | 1 16 17 | 3imtr4i | |
19 | 10 13 18 | chvarfv | |
20 | 5 19 | sylbi | |
21 | 4 20 | mpg | |
22 | elex | |
|
23 | 22 | adantl | |
24 | 23 | exlimiv | |
25 | 3 | elabg | |
26 | 24 25 | syl | |
27 | 21 26 | mpbid | |