Metamath Proof Explorer


Theorem setindtrs

Description: Set induction scheme without Infinity. See comments at setindtr . (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Hypotheses setindtrs.a yxψφ
setindtrs.b x=yφψ
setindtrs.c x=Bφχ
Assertion setindtrs zTrzBzχ

Proof

Step Hyp Ref Expression
1 setindtrs.a yxψφ
2 setindtrs.b x=yφψ
3 setindtrs.c x=Bφχ
4 setindtr aax|φax|φzTrzBzBx|φ
5 dfss3 ax|φyayx|φ
6 nfcv _xa
7 nfsab1 xyx|φ
8 6 7 nfralw xyayx|φ
9 nfsab1 xax|φ
10 8 9 nfim xyayx|φax|φ
11 raleq x=ayxyx|φyayx|φ
12 eleq1w x=axx|φax|φ
13 11 12 imbi12d x=ayxyx|φxx|φyayx|φax|φ
14 vex yV
15 14 2 elab yx|φψ
16 15 ralbii yxyx|φyxψ
17 abid xx|φφ
18 1 16 17 3imtr4i yxyx|φxx|φ
19 10 13 18 chvarfv yayx|φax|φ
20 5 19 sylbi ax|φax|φ
21 4 20 mpg zTrzBzBx|φ
22 elex BzBV
23 22 adantl TrzBzBV
24 23 exlimiv zTrzBzBV
25 3 elabg BVBx|φχ
26 24 25 syl zTrzBzBx|φχ
27 21 26 mpbid zTrzBzχ