Metamath Proof Explorer


Theorem setrec2lem2

Description: Lemma for setrec2 . The functional part of F is a function. (Contributed by Emmett Weisz, 6-Mar-2021) (New usage is discouraged.)

Ref Expression
Assertion setrec2lem2 FunFx|∃!yxFy

Proof

Step Hyp Ref Expression
1 relres RelFx|∃!yxFy
2 fvex FxV
3 eqeq2 z=Fxy=zy=Fx
4 3 imbi2d z=FxxFx|∃!yxFyyy=zxFx|∃!yxFyyy=Fx
5 4 albidv z=FxyxFx|∃!yxFyyy=zyxFx|∃!yxFyyy=Fx
6 2 5 spcev yxFx|∃!yxFyyy=FxzyxFx|∃!yxFyyy=z
7 vex yV
8 7 brresi xFx|∃!yxFyyxx|∃!yxFyxFy
9 abid xx|∃!yxFy∃!yxFy
10 tz6.12-1 xFy∃!yxFyFx=y
11 10 ancoms ∃!yxFyxFyFx=y
12 9 11 sylanb xx|∃!yxFyxFyFx=y
13 12 eqcomd xx|∃!yxFyxFyy=Fx
14 8 13 sylbi xFx|∃!yxFyyy=Fx
15 6 14 mpg zyxFx|∃!yxFyyy=z
16 15 ax-gen xzyxFx|∃!yxFyyy=z
17 nfcv _xF
18 nfab1 _xx|∃!yxFy
19 17 18 nfres _xFx|∃!yxFy
20 nfcv _yF
21 nfeu1 y∃!yxFy
22 21 nfab _yx|∃!yxFy
23 20 22 nfres _yFx|∃!yxFy
24 nfcv _zFx|∃!yxFy
25 19 23 24 dffun3f FunFx|∃!yxFyRelFx|∃!yxFyxzyxFx|∃!yxFyyy=z
26 1 16 25 mpbir2an FunFx|∃!yxFy