Metamath Proof Explorer


Theorem setrecsres

Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022)

Ref Expression
Hypotheses setrecsres.1 B=setrecsF
setrecsres.2 φFunF
Assertion setrecsres φB=setrecsF𝒫B

Proof

Step Hyp Ref Expression
1 setrecsres.1 B=setrecsF
2 setrecsres.2 φFunF
3 id xsetrecsF𝒫BxsetrecsF𝒫B
4 resss F𝒫BF
5 4 a1i φF𝒫BF
6 2 5 setrecsss φsetrecsF𝒫BsetrecsF
7 6 1 sseqtrrdi φsetrecsF𝒫BB
8 3 7 sylan9ssr φxsetrecsF𝒫BxB
9 velpw x𝒫BxB
10 fvres x𝒫BF𝒫Bx=Fx
11 9 10 sylbir xBF𝒫Bx=Fx
12 8 11 syl φxsetrecsF𝒫BF𝒫Bx=Fx
13 eqid setrecsF𝒫B=setrecsF𝒫B
14 vex xV
15 14 a1i xsetrecsF𝒫BxV
16 13 15 3 setrec1 xsetrecsF𝒫BF𝒫BxsetrecsF𝒫B
17 16 adantl φxsetrecsF𝒫BF𝒫BxsetrecsF𝒫B
18 12 17 eqsstrrd φxsetrecsF𝒫BFxsetrecsF𝒫B
19 18 ex φxsetrecsF𝒫BFxsetrecsF𝒫B
20 19 alrimiv φxxsetrecsF𝒫BFxsetrecsF𝒫B
21 1 20 setrec2v φBsetrecsF𝒫B
22 21 7 eqssd φB=setrecsF𝒫B