Metamath Proof Explorer


Theorem sge0pnfmpt

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses sge0pnfmpt.k kφ
sge0pnfmpt.a φAV
sge0pnfmpt.b φkAB0+∞
sge0pnfmpt.p φkAB=+∞
Assertion sge0pnfmpt φsum^kAB=+∞

Proof

Step Hyp Ref Expression
1 sge0pnfmpt.k kφ
2 sge0pnfmpt.a φAV
3 sge0pnfmpt.b φkAB0+∞
4 sge0pnfmpt.p φkAB=+∞
5 eqid kAB=kAB
6 1 3 5 fmptdf φkAB:A0+∞
7 eqcom B=+∞+∞=B
8 7 rexbii kAB=+∞kA+∞=B
9 4 8 sylib φkA+∞=B
10 pnfex +∞V
11 10 a1i φ+∞V
12 5 9 11 elrnmptd φ+∞rankAB
13 2 6 12 sge0pnfval φsum^kAB=+∞