Metamath Proof Explorer


Theorem sge0rnn0

Description: The range used in the definition of sum^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion sge0rnn0 ranx𝒫XFinyxFy

Proof

Step Hyp Ref Expression
1 0elpw 𝒫X
2 0fin Fin
3 1 2 elini 𝒫XFin
4 sum0 yFy=0
5 4 eqcomi 0=yFy
6 sumeq1 x=yxFy=yFy
7 6 rspceeqv 𝒫XFin0=yFyx𝒫XFin0=yxFy
8 3 5 7 mp2an x𝒫XFin0=yxFy
9 0re 0
10 eqid x𝒫XFinyxFy=x𝒫XFinyxFy
11 10 elrnmpt 00ranx𝒫XFinyxFyx𝒫XFin0=yxFy
12 9 11 ax-mp 0ranx𝒫XFinyxFyx𝒫XFin0=yxFy
13 8 12 mpbir 0ranx𝒫XFinyxFy
14 ne0i 0ranx𝒫XFinyxFyranx𝒫XFinyxFy
15 13 14 ax-mp ranx𝒫XFinyxFy