Metamath Proof Explorer


Theorem sge0snmptf

Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0snmptf.k kφ
sge0snmptf.a φAV
sge0snmptf.c φC0+∞
sge0snmptf.b k=AB=C
Assertion sge0snmptf φsum^kAB=C

Proof

Step Hyp Ref Expression
1 sge0snmptf.k kφ
2 sge0snmptf.a φAV
3 sge0snmptf.c φC0+∞
4 sge0snmptf.b k=AB=C
5 elsni kAk=A
6 5 4 syl kAB=C
7 6 adantl φkAB=C
8 3 adantr φkAC0+∞
9 7 8 eqeltrd φkAB0+∞
10 eqid kAB=kAB
11 1 9 10 fmptdf φkAB:A0+∞
12 2 11 sge0sn φsum^kAB=kABA
13 snidg AVAA
14 2 13 syl φAA
15 10 4 14 3 fvmptd3 φkABA=C
16 12 15 eqtrd φsum^kAB=C