Metamath Proof Explorer


Theorem sge0splitmpt

Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0splitmpt.xph x φ
sge0splitmpt.a φ A V
sge0splitmpt.b φ B W
sge0splitmpt.in φ A B =
sge0splitmpt.ac φ x A C 0 +∞
sge0splitmpt.bc φ x B C 0 +∞
Assertion sge0splitmpt φ sum^ x A B C = sum^ x A C + 𝑒 sum^ x B C

Proof

Step Hyp Ref Expression
1 sge0splitmpt.xph x φ
2 sge0splitmpt.a φ A V
3 sge0splitmpt.b φ B W
4 sge0splitmpt.in φ A B =
5 sge0splitmpt.ac φ x A C 0 +∞
6 sge0splitmpt.bc φ x B C 0 +∞
7 eqid A B = A B
8 5 adantlr φ x A B x A C 0 +∞
9 simpll φ x A B ¬ x A φ
10 elunnel1 x A B ¬ x A x B
11 10 adantll φ x A B ¬ x A x B
12 9 11 6 syl2anc φ x A B ¬ x A C 0 +∞
13 8 12 pm2.61dan φ x A B C 0 +∞
14 eqid x A B C = x A B C
15 1 13 14 fmptdf φ x A B C : A B 0 +∞
16 2 3 7 4 15 sge0split φ sum^ x A B C = sum^ x A B C A + 𝑒 sum^ x A B C B
17 ssun1 A A B
18 17 resmpti x A B C A = x A C
19 18 fveq2i sum^ x A B C A = sum^ x A C
20 ssun2 B A B
21 20 resmpti x A B C B = x B C
22 21 fveq2i sum^ x A B C B = sum^ x B C
23 19 22 oveq12i sum^ x A B C A + 𝑒 sum^ x A B C B = sum^ x A C + 𝑒 sum^ x B C
24 23 a1i φ sum^ x A B C A + 𝑒 sum^ x A B C B = sum^ x A C + 𝑒 sum^ x B C
25 16 24 eqtrd φ sum^ x A B C = sum^ x A C + 𝑒 sum^ x B C