Metamath Proof Explorer


Theorem sgnpbi

Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnpbi A * sgn A = 1 0 < A

Proof

Step Hyp Ref Expression
1 id A * A *
2 eqeq1 sgn A = 0 sgn A = 1 0 = 1
3 2 imbi1d sgn A = 0 sgn A = 1 0 < A 0 = 1 0 < A
4 eqeq1 sgn A = 1 sgn A = 1 1 = 1
5 4 imbi1d sgn A = 1 sgn A = 1 0 < A 1 = 1 0 < A
6 eqeq1 sgn A = 1 sgn A = 1 1 = 1
7 6 imbi1d sgn A = 1 sgn A = 1 0 < A 1 = 1 0 < A
8 0ne1 0 1
9 8 neii ¬ 0 = 1
10 9 pm2.21i 0 = 1 0 < A
11 10 a1i A * A = 0 0 = 1 0 < A
12 simp2 A * 0 < A 1 = 1 0 < A
13 12 3expia A * 0 < A 1 = 1 0 < A
14 neg1rr 1
15 neg1lt0 1 < 0
16 0lt1 0 < 1
17 0re 0
18 1re 1
19 14 17 18 lttri 1 < 0 0 < 1 1 < 1
20 15 16 19 mp2an 1 < 1
21 14 20 gtneii 1 1
22 21 nesymi ¬ 1 = 1
23 22 pm2.21i 1 = 1 0 < A
24 23 a1i A * A < 0 1 = 1 0 < A
25 1 3 5 7 11 13 24 sgn3da A * sgn A = 1 0 < A
26 25 imp A * sgn A = 1 0 < A
27 sgnp A * 0 < A sgn A = 1
28 26 27 impbida A * sgn A = 1 0 < A