Metamath Proof Explorer


Theorem sgrp2nmndlem3

Description: Lemma 3 for sgrp2nmnd . (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
sgrp2nmnd.o +M=xS,ySifx=AAB
sgrp2nmnd.p No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion sgrp2nmndlem3 Could not format assertion : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 sgrp2nmnd.o +M=xS,ySifx=AAB
4 sgrp2nmnd.p Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
5 4 3 eqtri Could not format .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) : No typesetting found for |- .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) with typecode |-
6 5 a1i Could not format ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) with typecode |-
7 df-ne AB¬A=B
8 eqeq2 x=BA=xA=B
9 8 adantr x=By=CA=xA=B
10 eqcom A=xx=A
11 9 10 bitr3di x=By=CA=Bx=A
12 11 notbid x=By=C¬A=B¬x=A
13 12 biimpcd ¬A=Bx=By=C¬x=A
14 7 13 sylbi ABx=By=C¬x=A
15 14 3ad2ant3 CSBSABx=By=C¬x=A
16 15 imp CSBSABx=By=C¬x=A
17 16 iffalsed CSBSABx=By=Cifx=AAB=B
18 simp2 CSBSABBS
19 simp1 CSBSABCS
20 6 17 18 19 18 ovmpod Could not format ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) with typecode |-