Metamath Proof Explorer


Theorem shftval3

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftval3 ABFshiftABA=FB

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 0cn 0
3 1 shftval2 AB0FshiftABA+0=FB+0
4 2 3 mp3an3 ABFshiftABA+0=FB+0
5 addrid AA+0=A
6 5 adantr ABA+0=A
7 6 fveq2d ABFshiftABA+0=FshiftABA
8 addrid BB+0=B
9 8 adantl ABB+0=B
10 9 fveq2d ABFB+0=FB
11 4 7 10 3eqtr3d ABFshiftABA=FB