Metamath Proof Explorer


Theorem shintcli

Description: Closure of intersection of a nonempty subset of SH . (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis shintcl.1 ASA
Assertion shintcli AS

Proof

Step Hyp Ref Expression
1 shintcl.1 ASA
2 1 simpri A
3 n0 AzzA
4 intss1 zAAz
5 1 simpli AS
6 5 sseli zAzS
7 shss zSz
8 6 7 syl zAz
9 4 8 sstrd zAA
10 9 exlimiv zzAA
11 3 10 sylbi AA
12 2 11 ax-mp A
13 ax-hv0cl 0
14 13 elexi 0V
15 14 elint2 0AzA0z
16 sh0 zS0z
17 6 16 syl zA0z
18 15 17 mprgbir 0A
19 12 18 pm3.2i A0A
20 elinti xAzAxz
21 20 com12 zAxAxz
22 elinti yAzAyz
23 22 com12 zAyAyz
24 shaddcl zSxzyzx+yz
25 6 24 syl3an1 zAxzyzx+yz
26 25 3expib zAxzyzx+yz
27 21 23 26 syl2and zAxAyAx+yz
28 27 com12 xAyAzAx+yz
29 28 ralrimiv xAyAzAx+yz
30 ovex x+yV
31 30 elint2 x+yAzAx+yz
32 29 31 sylibr xAyAx+yA
33 32 rgen2 xAyAx+yA
34 shmulcl zSxyzxyz
35 6 34 syl3an1 zAxyzxyz
36 35 3expib zAxyzxyz
37 23 36 sylan2d zAxyAxyz
38 37 com12 xyAzAxyz
39 38 ralrimiv xyAzAxyz
40 ovex xyV
41 40 elint2 xyAzAxyz
42 39 41 sylibr xyAxyA
43 42 rgen2 xyAxyA
44 33 43 pm3.2i xAyAx+yAxyAxyA
45 issh2 ASA0AxAyAx+yAxyAxyA
46 19 44 45 mpbir2an AS