Metamath Proof Explorer


Theorem shorth

Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shorth HSGHAGBHAihB=0

Proof

Step Hyp Ref Expression
1 ssel GHAGAH
2 1 anim1d GHAGBHAHBH
3 2 imp GHAGBHAHBH
4 3 ancomd GHAGBHBHAH
5 shocorth HSBHAHBihA=0
6 5 imp HSBHAHBihA=0
7 shss HSH
8 7 sseld HSBHB
9 shocss HSH
10 9 sseld HSAHA
11 8 10 anim12d HSBHAHBA
12 11 imp HSBHAHBA
13 orthcom BABihA=0AihB=0
14 12 13 syl HSBHAHBihA=0AihB=0
15 6 14 mpbid HSBHAHAihB=0
16 4 15 sylan2 HSGHAGBHAihB=0
17 16 exp32 HSGHAGBHAihB=0