Metamath Proof Explorer


Theorem shorth

Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shorth H S G H A G B H A ih B = 0

Proof

Step Hyp Ref Expression
1 ssel G H A G A H
2 1 anim1d G H A G B H A H B H
3 2 imp G H A G B H A H B H
4 3 ancomd G H A G B H B H A H
5 shocorth H S B H A H B ih A = 0
6 5 imp H S B H A H B ih A = 0
7 shss H S H
8 7 sseld H S B H B
9 shocss H S H
10 9 sseld H S A H A
11 8 10 anim12d H S B H A H B A
12 11 imp H S B H A H B A
13 orthcom B A B ih A = 0 A ih B = 0
14 12 13 syl H S B H A H B ih A = 0 A ih B = 0
15 6 14 mpbid H S B H A H A ih B = 0
16 4 15 sylan2 H S G H A G B H A ih B = 0
17 16 exp32 H S G H A G B H A ih B = 0