Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shorth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |
|
2 | 1 | anim1d | |
3 | 2 | imp | |
4 | 3 | ancomd | |
5 | shocorth | |
|
6 | 5 | imp | |
7 | shss | |
|
8 | 7 | sseld | |
9 | shocss | |
|
10 | 9 | sseld | |
11 | 8 10 | anim12d | |
12 | 11 | imp | |
13 | orthcom | |
|
14 | 12 13 | syl | |
15 | 6 14 | mpbid | |
16 | 4 15 | sylan2 | |
17 | 16 | exp32 | |